MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 6 - March 2023
 Practice Problems

1A) Solve for x : $\quad\left|\begin{array}{cc}2 x & 3 \\ 7 & x\end{array}\right|=\left|\begin{array}{ccc}0 & x & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 1\end{array}\right|$
2A) Compute all values of x for which $\left(4^{x}\right)^{3}=8^{6^{2}}$.
3A) Compute $\operatorname{Cot}^{-1}(-1)+\operatorname{Sin}^{-1}\left(-\frac{1}{2}\right)$.
Note: There is uniform agreement on the range of the following principal inverse trig functions: $y=\operatorname{Sin}^{-1}(x), y=\operatorname{Cos}^{-1}(x)$, and $y=\operatorname{Tan}^{-1}(x)$

$$
\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad[0, \pi] \quad\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

There is $\mathbf{n \mathbf { n }}$ uniform agreement for $y=\operatorname{Cot}^{-1}(x), y=\operatorname{Sec}^{-1}(x)$, and $y=\operatorname{Csc}^{-1}(x)$.
For this question, assume the range of $y=\operatorname{Cot}^{-1}(x)$ is $(0, \pi)$.
4A) A box measuring 6 " wide, 8 " deep, and 15 " high is completely filled with 10,000 identical buttons. 6400 of these buttons are packed with the same density in a container having the same footprint (6 " $\times 8$ "). Compute the number of inches in the height to which this container is filled.

5A) $B E S T$ is a square with side-length $48 . P$ is on $\overline{B E}$ such that $B P: P E=7: 17$. If $P A R T$ is a rhombus, compute $P R$.

6A) Let S be the sum of the coefficients of $(x-2 y-3)^{2}$ when the expression is expanded, and any similar terms are combined. Likewise, let T be the sum of the coefficients of $(x+2 y+3)^{2}$. Compute $\frac{S}{T}$.
Team D)
The region bounded by the graph of $|x|+|y|=7$ is divided into two regions by the graph of $y=2(1-x)$. Compute the ratio of the area of the larger of these two regions to the area of the other.

Answers:

1A) $-3, \frac{9}{2}$
4A) 9.6
2A) 18
5A) 60
3A) $\frac{7 \pi}{12}$
6A) $\frac{4}{9}$
Team D) $\frac{25}{17}$
The region bounded by the graph of $|x|+|y|=7$ is divided into two regions by the graph of $y=2(1-x)$. Compute the ratio of the area of the larger of these two regions to the area of the other.

The graph of $|x|+|y|=7$ is a square with vertices on the x - and y-axes.
The graph of $y=2(1-x)$ is a line with intercepts $(1,0)$ and $(0,2)$.
$\triangle B P Q \sim \triangle D S Q$ and $(B Q, D Q)=(5,9)$.
Let $P B=5 a$ and $S D=9 a$.
$\triangle S C R \sim \triangle P A R$ and $(C R, A R)=(6,8)$.
Let $S C=3 b$ and $P A=4 b$.
$\left\{\begin{array}{l}A B=P A+P B=4 b+5 a=7 \sqrt{2} \\ C D=S C+S D=3 b+9 a=7 \sqrt{2}\end{array}\right.$.
$\Rightarrow b-4 a=0 \Leftrightarrow b=4 a$
$\frac{\operatorname{area}(A P S D)}{\operatorname{area}(P B C S)}=\frac{\frac{1}{2}(D(4 b+9 a)}{\frac{1}{2} C(5 a+3 b)}=\frac{25 a}{17 a}=\frac{\mathbf{2 5}}{\underline{\mathbf{1 7}}}$.

