MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 4 - January 2023
 Practice Problems

1A) The vertical line defined by $x+6=0$ intersects an ellipse defined by $\frac{(x+3)^{2}}{36}+\frac{(y-1)^{2}}{27}=1$ at points P and Q. Compute $P Q$.

2A) If phactor means to write as a sum of positive integers, the phactorization of an integer would not be unique. In how many different ways could 6 be phactored, if the order of the terms is irrelevant, i.e., $1+2+3,1+3+2$, and $3+2+1$ are not considered different?

3A) \quad Solve for x over $0^{\circ} \leq x<360^{\circ}$: $\quad \cos (2 x)-3 \cos (x)=-2$

4A) There are four numbers less than 500 that are the product of exactly 4 distinct primes. Compute a positive integer solution of $x^{2}-x=N$, where N is one of those four numbers.

5A) Perpendicular lines L_{1} and L_{2} intersect at interior point P on diagonal $\overline{B D}$ in rectangle $A B C D$. If $A B=65, B C=156$, and $P D=52$, compute the sum of the areas of the shaded regions.

6A) Given: $x: y=3: 8, y: z=6: 19$
Compute z, if $x=1.8$.

Team F)

The graphs of the following four equations intersect in exactly four points A, B, C, and D. A lies on 3 of the 4 graphs.

$$
\left\{\begin{array}{l}
y=-5.5 x-12 \\
x-y+14=0 \\
4 x+7 y=-1 \\
\frac{x}{2.25}+\frac{y}{1}=1
\end{array}\right.
$$

Compute the value of $\min (A B, A C, A D)$.

Answers:

1A) 9
4A) $15($ for $N=210)$, or $22($ for $N=462)$
2A) 10
5A) 4320
3A) $0^{\circ}, 60^{\circ}, 300^{\circ}$
6A) 15.2

Team F) $\quad \frac{5}{7} \sqrt{97}$
The graphs of the following four equations intersect in exactly four points A, B, C, and D. A lies on 3 of the $\mathbf{4}$ graphs.

$$
\left\{\begin{array}{l}
y=-5.5 x-12 \\
x-y+14=0 \\
4 x+7 y=-1 \\
\frac{x}{2.25}+\frac{y}{1}=1
\end{array}\right.
$$

Compute the value of $\min (A B, A C, A D)$.
Four points of intersection imply two possibilities:

- two pairs of parallel lines
- three lines passing through a common point and a fourth line that intersects the first three lines Since, by inspection, the slopes the first three lines are $-5.5,1$, and $-\frac{4}{7}$, we are dealing with the second case. A sketch will give us a clue about which calculations are absolutely necessary. The graph of the first equation is a line through $(-2,-1)$ and $(0,-12)$.
The graph of the second equation is a line through $(0,14)$ and $(-14,0)$.
The graph of the third equation is a line through $(-2,1)$ and $(5,-3)$.
Since the fourth equation is in intercept-intercept form, we know it passes through $(2.25,0)$ and $(0,1)$, or, using the slope $m=-\frac{4}{9}$ through $(9,-3)$. Since $\angle A C D$ is obtuse, $A D>A C, \min (A B, A C, A D)$ is either $A B$ or $A C$. $\left\{\begin{array}{l}x-y+14=0 \\ 4 x+7 y=-1\end{array} \Rightarrow A(-9,5)\right.$ $\left\{\begin{array}{l}y=-5.5 x-12 \\ x-y+14=0\end{array} \Rightarrow B(-4,10) \quad\left\{\begin{array}{l}y=-5.5 x-12 \\ \frac{x}{2.25}+\frac{y}{1}=1\end{array} \Rightarrow C\left(-\frac{18}{7}, \frac{15}{7}\right)\right.\right.$
$A B^{2}=(-4+9)^{2}+(10-5)^{2}=50$
$A C^{2}=\left(-9+\frac{18}{7}\right)^{2}+\left(5-\frac{15}{7}\right)^{2}=\frac{45^{2}+20^{2}}{7^{2}}=\frac{2425}{49} \approx 49.5$

Thus, $\min (A B, A C, A D)=A C=\frac{1}{7} \sqrt{2425}=\frac{1}{7} \sqrt{25 \cdot 97}=\underline{\frac{5}{7}} \sqrt{\mathbf{9 7}}$.

Original 4A) incorrectly stated that there are 10 numbers less than 1200 that....
There are actually 20 such numbers
$2 \cdot 3 \cdot 5 \cdot 7=210 \Rightarrow 15 \cdot-14$
$2 \cdot 3 \cdot 5 \cdot 11=330$
$2 \cdot 3 \cdot 5 \cdot 13=390$
$2 \cdot 3 \cdot 5 \cdot 17=510$
$2 \cdot 3 \cdot 5 \cdot 19=570$
$2 \cdot 3 \cdot 5 \cdot 23=690$
$2 \cdot 3 \cdot 5 \cdot 29=870 \Rightarrow 30 \cdot-29$
$2 \cdot 3 \cdot 5 \cdot 31=930 \Rightarrow 31 \cdot-30$
$2 \cdot 3 \cdot 5 \cdot 37=1110$
$2 \cdot 3 \cdot 5 \cdot 41=1230$
$2 \cdot 3 \cdot 7 \cdot 11=462 \Rightarrow 22 \cdot-21$
$2 \cdot 3 \cdot 7 \cdot 13=546$
$2 \cdot 3 \cdot 7 \cdot 17=714$
$2 \cdot 3 \cdot 7 \cdot 19=798$
$2 \cdot 3 \cdot 7 \cdot 23=966$
$2 \cdot 3 \cdot 7 \cdot 29=1218$
$2 \cdot 3 \cdot 11 \cdot 13=858$
$2 \cdot 3 \cdot 11 \cdot 17=1122 \Rightarrow 34 \cdot-33$
$2 \cdot 3 \cdot 11 \cdot 19=1254$
$2 \cdot 3 \cdot 13 \cdot 17=1326$
$2 \cdot 5 \cdot 7 \cdot 11=770$
$2 \cdot 5 \cdot 7 \cdot 13=910$
$2 \cdot 5 \cdot 7 \cdot 17=1190 \Rightarrow 35 \cdot-34$
$3 \cdot 5 \cdot 7 \cdot 11=1155$

