MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - January 2023 Practice Problems

- 1A) The vertical line defined by x+6=0 intersects an ellipse defined by $\frac{(x+3)^2}{36} + \frac{(y-1)^2}{27} = 1$ at points *P* and *Q*. Compute *PQ*.
- 2A) If phactor means to write as a sum of positive integers, the phactorization of an integer would not be unique. In how many different ways could 6 be phactored, if the order of the terms is irrelevant, i.e., 1+2+3, 1+3+2, and 3+2+1 are not considered different?
- 3A) Solve for x over $0^{\circ} \le x < 360^{\circ}$: $\cos(2x) 3\cos(x) = -2$
- 4A) There are four numbers less than 500 that are the product of exactly 4 distinct primes. Compute a positive integer solution of $x^2 - x = N$, where N is one of those four numbers.
- 5A) Perpendicular lines L_1 and L_2 intersect at interior point P on diagonal \overline{BD} in rectangle ABCD. If AB = 65, BC = 156, and PD = 52, compute the sum of the areas of the shaded regions.

6A) Given: x: y = 3:8, y: z = 6:19Compute z, if x = 1.8.

Team F)

The graphs of the following four equations intersect in exactly four points *A*, *B*, *C*, and *D*. *A* lies on 3 of the 4 graphs.

$$y = -5.5x - 12$$

$$x - y + 14 = 0$$

$$4x + 7y = -1$$

$$\frac{x}{2.25} + \frac{y}{1} = 1$$

Compute the value of $\min(AB, AC, AD)$.

Answers:

 1A)
 9
 4A)
 15 (for N = 210), or 22 (for N = 462)

 2A)
 10
 5A)
 4320

 3A)
 0°, 60°, 300°
 6A)
 15.2

 Team F)
 $\frac{5}{7}\sqrt{97}$

The graphs of the following four equations intersect in exactly four points A, B, C, and D. A lies on 3 of the 4 graphs.

$$\begin{cases} y = -5.5x - 12 \\ x - y + 14 = 0 \\ 4x + 7y = -1 \\ \frac{x}{2.25} + \frac{y}{1} = 1 \end{cases}$$

Compute the value of $\min(AB, AC, AD)$.

Four points of intersection imply two possibilities:

- two pairs of parallel lines
- three lines passing through a common point and a fourth line that intersects the first three lines

Since, by inspection, the slopes the first three lines are -5.5,1, and $-\frac{4}{7}$, we are dealing with the

second case. A sketch will give us a clue about which calculations are absolutely necessary.

The graph of the first equation is a line through (-2,-1) and (0,-12). The graph of the second equation is a line through (0,14) and (-14,0).

The graph of the third equation is a line through (-2,1) and (5,-3). Since the fourth equation is in intercept-intercept form, we know it passes through (2.25,0) and (0,1), or, using the slope $m = -\frac{4}{9}$ through (9,-3). Since $\angle ACD$ is obtuse, AD > AC, min (AB, AC, AD) is either AB or AC. $\begin{cases} x - y + 14 = 0 \\ 4x + 7y = -1 \end{cases} \Rightarrow A(-9,5)$ $\begin{cases} y = -5.5x - 12 \\ x - y + 14 = 0 \end{cases} \Rightarrow B(-4,10)$ $\begin{cases} y = -5.5x - 12 \\ \frac{x}{2.25} + \frac{y}{1} = 1 \end{cases} \Rightarrow C\left(-\frac{18}{7}, \frac{15}{7}\right)$ $AB^2 = (-4+9)^2 + (10-5)^2 = 50$ $AC^2 = \left(-9 + \frac{18}{7}\right)^2 + \left(5 - \frac{15}{7}\right)^2 = \frac{45^2 + 20^2}{7^2} = \frac{2425}{49} \approx 49.5$ Thus, min $(AB, AC, AD) = AC = \frac{1}{7}\sqrt{2425} = \frac{1}{7}\sqrt{25 \cdot 97} = \frac{5}{7}\sqrt{97}$. Original 4A) incorrectly stated that there are 10 numbers less than 1200 that.... There are actually 20 such numbers $2 \cdot 3 \cdot 5 \cdot 7 = 210 \Longrightarrow 15 \cdot -14$ $2 \cdot 3 \cdot 5 \cdot 11 = 330$ $2 \cdot 3 \cdot 5 \cdot 13 = 390$ $2 \cdot 3 \cdot 5 \cdot 17 = 510$ $2 \cdot 3 \cdot 5 \cdot 19 = 570$ $2 \cdot 3 \cdot 5 \cdot 23 = 690$ $2 \cdot 3 \cdot 5 \cdot 29 = 870 \Longrightarrow 30 \cdot -29$ $2 \cdot 3 \cdot 5 \cdot 31 = 930 \Longrightarrow 31 \cdot -30$ $2 \cdot 3 \cdot 5 \cdot 37 = 1110$ $2 \cdot 3 \cdot 5 \cdot 41 = 1230$ $2 \cdot 3 \cdot 7 \cdot 11 = 462 \Longrightarrow 22 \cdot -21$ $2 \cdot 3 \cdot 7 \cdot 13 = 546$ $2 \cdot 3 \cdot 7 \cdot 17 = 714$ $2 \cdot 3 \cdot 7 \cdot 19 = 798$ $2 \cdot 3 \cdot 7 \cdot 23 = 966$ $2 \cdot 3 \cdot 7 \cdot 29 = 1218$ $2 \cdot 3 \cdot 11 \cdot 13 = 858$ $2 \cdot 3 \cdot 11 \cdot 17 = 1122 \Longrightarrow 34 \cdot -33$ $2 \cdot 3 \cdot 11 \cdot 19 = 1254$ $2 \cdot 3 \cdot 13 \cdot 17 = 1326$ $2 \cdot 5 \cdot 7 \cdot 11 = 770$ $2 \cdot 5 \cdot 7 \cdot 13 = 910$ $2 \cdot 5 \cdot 7 \cdot 17 = 1190 \Longrightarrow 35 \cdot -34$ $3 \cdot 5 \cdot 7 \cdot 11 = 1155$