MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - November 2021 Practice Problems

- 1A) Given: z = 2 iFive times the sum of the reciprocal of z and the congugate of z equals a + bi. Compute the ordered pair (a,b).
- 2A) Compute the <u>sum</u> of all integer values of x for which $x^2 4x \le 2021$.
- 3A) The diagonals of a rhombus have lengths of 5 and 10. Compute *P*, the perimeter of this rhombus.
- 4A) Compute the <u>largest</u> 2-digit integer k for which 3k has exactly 12 factors.
- 5A) $A = x^2 x$ is the largest number of degrees in the measure of angle A in the interval $0^\circ < A \le 360^\circ$ for which $2\cos A + 1 = 0$. Compute <u>all</u> possible values of x.
- 6A) ABCD is a kite, its axis of symmetry is \overline{AC} , $m \angle 1 = 84^\circ$, and $m \angle 2 = 110^\circ$. $\angle 1$ forms a linear pair with $\angle BAD$. $\angle 2$ forms a linear pair with $\angle BCD$. Compute the number of degrees in $m \angle BDA + m \angle DBC$.

Team B)

The sum of a two-digit natural number and its reversal is 66.

The sum of all such numbers is T. How many natural numbers less than T are relatively prime to T, i.e., have no factors in common with T (other than 1)?

Note: There is no requirement that the reversal will also be a two-digit number.

Anc	wore.	•
AIIS	wus.	

1A)	(12, 6)	4A)	98
2A)	182	5A)	-15, 16
3A)	$10\sqrt{5}$	6A)	97

Team B) 120

The sum of a two-digit natural number and its reversal is 66. The sum of all such numbers is *T*. How many natural numbers less than *T* are relatively prime to *T*, i.e., have no factors in common with *T* (other than 1)?

 $(10x + y) + (10y + x) = 66 \Rightarrow x + y = 6 \Rightarrow 60, 51, 15, 42, 24, 33$

$$\Rightarrow T = 225 = 3^2 \cdot 5^2$$

A Venn diagram helps avoid over-counting multiples of 3 and 5.

 $225 - (60 + 15 + 30) = \underline{120}$

If the prime factorization had 3 distinct factors, to separate the overlaps, the Venn Diagram would look like this:

For 4 or more factors, drawing a Venn Diagram is more challenging or impossible. A different approach would be helpful.

Alternately, the φ function (pronounced 'fee') counts all the natural numbers less than *n* that are relatively prime to *n*. This function is fast and easy to use if the prime factorization of *n* is known.

If
$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_k^{e_k}$$
, then $\varphi(n) = n(1-p_1)(1-p_2) \cdot \dots \cdot (1-p_k)$
For $225 = 3^2 5^2$, we have $225\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) = 225 \cdot \frac{2 \cdot 4}{3 \cdot 5} = 15 \cdot 8 = \underline{120}$.

It's not hard to see why this function does the job. It says: One third of the numbers are divisible by 3; eliminate them: 225 - 75 = 150. One fifth of the remaining numbers are divisible by 5; eliminate them: $150 - 30 = \underline{120}$. What's left will have no factors in common with 225.