MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2018
 ROUND 1 COMPLEX NUMBERS (No Trig)

ANSWERS

A) (\qquad , \qquad)
B) \qquad
C) \qquad
A) $\sqrt{-2} \cdot \sqrt{-1}+\sqrt{-8}+\sqrt{-32}=a+b i$. Compute the ordered pair (a, b).
B) Given: $(1-i)^{9}=x+y i$, where x and y are integer constants

Compute $\sqrt[4]{x-y}$.
C) D is an imaginary root of $x^{3}+8=0$.

Compute $\left(2-2 D+D^{2}\right)\left(2+2 D-D^{2}\right)$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Round 1

A) $\sqrt{-2} \cdot \sqrt{-1}+\sqrt{-8}+\sqrt{-32}=i \sqrt{2} \cdot i+i \sqrt{8}+i \sqrt{32}=i^{2} \sqrt{2}+2 i \sqrt{2}+4 i \sqrt{2}=-\sqrt{2}+(6 \sqrt{2}) i$ Thus, $(a, b)=\underline{(-\sqrt{2}, 6 \sqrt{2})}$.
B) $(1-i)^{9}=\left((1-i)^{2}\right)^{4}(1-i)=(1-2 i-1)^{4}(1-i)=(-2 i)^{4}(1-i)=16-16 i$.

Thus, $\sqrt[4]{x-y}=\sqrt[4]{32}=\underline{\mathbf{2} \sqrt[4]{\mathbf{2}}}$.
C) $x^{3}+8=0 \Leftrightarrow(x+2)\left(x^{2}-2 x+4\right)=0$. Since $x=D$ is a root (from the trinomial factor), we have $D^{2}-2 D+4=0 \Leftrightarrow D^{2}+4=2 D$. Thus, $\left(2-2 D+D^{2}\right)\left(2+2 D-D^{2}\right)=\left(2-\left(D^{2}+4\right)+D^{2}\right)\left(2+\left(D^{2}+4\right)-D^{2}\right)=(-2)(6)=\underline{\mathbf{1 2}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 ROUND 2 ALGEBRA 1: ANYTHING

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Let the constant A be the largest odd divisor of 576 .

Let the constant B be the smallest positive 3-digit multiple of 7
Let the constant C be the second smallest positive 2-digit number which is 1 more than a power of 2 .
Solve the equation $A x+B=C$.
B) At a sports bar, the ratio of people to stools is $2: 5$. The total number of "legs" is 76 .
Assume people are two-legged and stools are thee-legged.
If all the people sit at the bar, how many unoccupied stools are there?
C) $P(-7,4), Q\left(-\frac{3}{2}, y\right)$, and $R(x, 10)$ are collinear and $P Q=Q R$.

Compute k, if point $S(k, k)$ lies on the line passing through P, Q and R.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Round 2

A) $576=4 \cdot 144=16 \cdot 36=2^{6} 3^{2}$

Since the largest odd factor takes all of the odd prime factors and none of the even, $A=9$.
Since $7 \cdot 14=98$, the smallest 3-digit multiple of 7 is $B=105$.
Since $2^{3}=8,2^{4}=16$, and $2^{5}=32, C=33$.
$9 x+105=33 \Rightarrow x=\frac{33-105}{9}=\frac{-72}{9}=\underline{\mathbf{8}}$.
B) Suppose there are k people and N stools.
$k: N=2: 5 \Rightarrow k=2 a, N=5 a$, for some integer a.
$2 k+3 N=76 \Rightarrow 4 a+15 a=76 \Rightarrow a=4 \Rightarrow(k, N)=(8,20) \Rightarrow N-k=\underline{\mathbf{1 2}}$.
C) Given collinear points $P(-7,4), Q\left(-\frac{3}{2}, y\right)$, and $R(x, 10)$.

Since Q is the midpoint of $\overline{P R},-\frac{3}{2}=\frac{x+(-7)}{2}, y=\frac{4+10}{2} \Rightarrow(x, y)=(4,7)$.
Therefore, the slope of the line $\stackrel{\operatorname{sum}}{P R}$ is $m=\frac{10-4}{4-(-7)}=\frac{6}{11}$ and, using point P, the equation in point-slope form is $y-4=\frac{6}{11}(x+7)$. Letting $x=y=k$ and clearing fractions, we have $11(k-4)=6(k+7) \Rightarrow 5 k=42+44=86 \Rightarrow k=\underline{\mathbf{1 7 . 2}}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2018
 ROUND 3 PLANE GEOMETRY: AREAS OF RECTILINEAR FIGURES

ANSWERS
A) \qquad
B) \qquad
C) \qquad , \qquad , \qquad)
A) Consider a square with side of length x and a rectangle with sides of length x and $x-k$ For how many ordered pairs (k, x), where k and x are integers, will the area of the square exceed the area of the rectangle by 48 square units?
B) $\overline{P Q}$ is the median in trapezoid $A B C D$, where $\overline{A B} \| \overline{C D}, C D>A B$
E is a point on $\overline{C D}$ such that $\overline{P E} \perp \overline{C D}$.
If $P E=6$ and $P Q=7.5$, compute the area of $A B C D$.
C) Rectangle $A B C D$ has area 210 square units and dimension m by n units, where m and n are integers and $m<n$. As indicated, squares are cut out of each corner. The sides of the squares at A, B, C, and D are $x, x+2, x+3$ and $x+1$ respectively.
The area of the shaded region is half the area of $A B C D$. Compute the ordered triple (x, m, n).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Round 3

A) $x^{2}-x(x-k)=48 \Rightarrow k x=48 \Rightarrow(k, x)=(1,48),(2,24),(3,16),(4,12),(6,8)$

Thus, there are $\underline{\mathbf{5}}$ possible ordered pairs.
B) Since the length of the median in any trapezoid is the average of the lengths of the bases,
area $=\frac{1}{2} h\left(b_{1}+b_{2}\right)=h \cdot \frac{b_{1}+b_{2}}{2}=h m$.
$P E=6 \Rightarrow B F=h=12$
Therefore, area $=12(7.5)=\underline{\mathbf{9 0}}$.

C) The sum of the areas of the 4 squares is
$x^{2}+(x+1)^{2}+(x+2)^{2}+(x+3)^{2}=105 \Leftrightarrow 4 x^{2}+12 x+14=105$
$\Rightarrow 4 x^{2}+12 x-91=0 \Leftrightarrow(2 x-7)(2 x+13)=0 \Rightarrow x=3.5$
The possible dimensions of $A B C D$ are $1 \times 210,2 \times 105$,
$3 \times 70,5 \times 42,6 \times 35,7 \times 30$, and 14×15.
The only one which allows the 4 cutouts is 14×15.
Therefore, $(x, m, n)=\underline{(\mathbf{3 . 5}, \mathbf{1 4}, \mathbf{1 5})}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2018
 ROUND 4 ALG 1: FACTORING AND ITS APPLICATIONS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Compute the minimum positive integer k for which $6 k$ has more than 10 factors.
B) For some positive integers $A, x^{4}+A x^{2}+625$ can be written as the difference of perfect squares, namely $\left(x^{2}+25\right)^{2}-(N x)^{2}$, where N is also a positive integer.
Determine the sum of all possible values of A.
C) Solve for x.

$$
x^{6}+(42 x)^{2} \leq 85 x^{4}
$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Round 4

A) We can count factors without listing them, e.g., $24=2^{3} 3^{1}$ has $(3+1)(1+1)=8$ factors, since factors of 24 can only have prime factors of 2 and 3 , and the exponent of 2 can only be $0,1,2$, or 3 , and the exponent of 3 can only be 0 or 1 . In general, the exponents can range from 0 to the maximum number of times the prime factor occurred in the prime factorization of N.

$6 k$	Factorization	\# factors
6	$2^{1} 3^{1}$	4
12	$2^{2} 3^{1}$	6
18	$2^{1} 3^{2}$	6
24	$2^{3} 3^{1}$	8
30	$2^{1} 3^{1} 5^{1}$	8
36	$2^{2} 3^{2}$	9
42	$2^{1} 3^{1} 7^{1}$	8
48	$2^{4} 3^{1}$	10
54	$2^{1} 3^{3}$	8
60	$2^{2} 3^{1} 5^{1}$	12

$$
\Rightarrow k=\underline{\mathbf{1 0}} .
$$

B) $\left(x^{2}+25\right)^{2}-(N x)^{2}=x^{4}+\left(50-N^{2}\right) x^{2}+625$

Thus, $A=50-N^{2}$. For integers $N=1,2, \ldots, 7, A$ is also a positive integer, namely 49, 46, $41,34,25,14$ and 1.
Grouping advantageously, we have $(49+41)+(46+34)+(25+14+1)=\underline{\mathbf{2 1 0}}$.
C) $x^{6}+(42 x)^{2}<85 x^{4} \Leftrightarrow x^{2}\left(x^{4}-85 x^{2}+42^{2}\right)<0$

Examining the trinomial piece, we have

$$
\begin{aligned}
& x^{4}-85 x^{2}+42^{2}=\left(x^{4}-84 x^{2}+42^{2}\right)-x^{2}=\left(x^{2}-42\right)^{2}-(x)^{2}=\left(x^{2}+x-42\right)\left(x^{2}-x-42\right) \\
& =(x+7)(x-6)(x-7)(x+6)
\end{aligned}
$$

Thus, the critical points are at $0, \pm 6, \pm 7$ and the sign of the product is determined by the number of negative factors.

There is no sign change at $x=0$, since the factor x occurs twice $\left(x^{2}=(x-0)^{2}\right)$.
Thus, the solution is $-\mathbf{7} \leq \boldsymbol{x} \leq \mathbf{- 6}$ or $\boldsymbol{x}=\mathbf{0}$ or $\mathbf{6} \leq \boldsymbol{x} \leq \mathbf{7}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2018 ROUND 5 TRIG: FUNCTIONS OF SPECIAL ANGLES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Compute $\cos \left(\frac{n \pi}{6}\right)$, if n is the smallest prime greater than 89 .
B) The lines $y=\sin 30^{\circ}$ and $x=\tan 45^{\circ}$ intersect at point $A\left(x_{1}, y_{1}\right)$.
$y=\cos x$ reaches a maximum at $B\left(x_{2}, y_{2}\right)$, where $x_{2} \cdot y_{2}$ is a rational number.
Compute the distance between A and B.
C) $A B C D$ is a rectangle. $B E=1$ and angle measures are as indicated. Compute $A E$. Your answer may not contain any radical whose radicand is an irrational number.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Round 5

A) Since $91=7 \cdot 13,93(\div 3)$ and $95(\div 5)$ are composite, we test 97 (by prime divisors $<\sqrt{97}$).
$2,3,5$, and 7 each leave a nonzero remainder, guaranteeing that 97 is prime.
Since $\frac{97 \pi}{6}=\pi\left(16 \frac{1}{6}\right)=16 \pi+\frac{\pi}{6}=8(2 \pi)+\frac{\pi}{6}, \frac{97 \pi}{6}$ is coterminal with $\frac{\pi}{6}$.
Trig functions of coterminal values always have equal values.
$\therefore \cos \left(\frac{97 \pi}{6}\right)=\cos \left(\frac{\pi}{6}\right)=+\frac{\sqrt{3}}{2}$.
B) $\left\{\begin{array}{l}y=\sin 30^{\circ} \Leftrightarrow y=\frac{1}{2} \\ x=\tan 45^{\circ} \Leftrightarrow x=1\end{array} \Rightarrow A\left(1, \frac{1}{2}\right)\right.$
$y=\cos x$ attains is maximum of 1 at $x=0$ and at intervals of 2π, both right and left.
$\Rightarrow(0,1),(\pm 2 \pi, 1),(\pm 4 \pi, 1), \ldots$
The only point at which $x_{2} \cdot y_{2}$ is rational is at $B(0,1)$.
Thus, $A B=\sqrt{(1-0)^{2}+\left(\frac{1}{2}-1\right)^{2}}=\sqrt{\frac{5}{4}}=\underline{\frac{\sqrt{5}}{2}}$.
C) In $\triangle A B E, 6 x=90 \Rightarrow x=15$ and $\triangle B F E$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ (right) triangle with a hypotenuse of length 1.
Therefore, $E F=\frac{1}{2}$ and $B F=\frac{\sqrt{3}}{2}$.
Since both $\triangle D E F$ and $\triangle B C F$ are isosceles right triangles,
we have $D F=D E=\frac{1}{2} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{4}$ and

$F C=B C=A D=\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{6}}{4}$. The required length is $A E=A D-E D=\frac{\sqrt{6}-\sqrt{2}}{4}$.
Note: Since the hypotenuse of $\triangle A B E$ is 1 , this means that the exact value of $\sin 15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 ROUND 6 PLANE GEOMETRY: ANGLES, TRIANGLES AND PARALLELS

ANSWERS

A) (\qquad , \qquad)
B) \qquad
C) \qquad
A) The measures of the angles in a scalene triangle are in a 7:10:13 ratio.

The altitude from the vertex of the largest angle divides that angle into an $a: b$ ratio, where $a<b$. Compute the ordered pair of integers (a, b).
B) $\triangle A D E \sim \triangle A B C$, where D lies on $\overline{A C}, E$ lies on $\overline{A B}$, and $\overline{D E}$ is not parallel to $\overline{B C}$. The measures of angles A, B, and C (in some order) form an arithmetic sequence with a common difference of 12 .
Draw a line through point E parallel to $\overline{B C}$, intersecting $\overline{A C}$ in point F.
Compute all possible degree measures of RFED.
C) Let α denote the measure of the obtuse angle formed by intersection of the angle bisectors of two angles in $\triangle P B J$. Let β denote the measure of the third angle in $\triangle P B J$. Determine the smallest possible value of the ratio $\frac{\alpha}{\beta}$, rounded to the nearest tenth, if necessary.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Round 6

A) $7 x+10 x+13 x=180 \Rightarrow x=6$.

Thus, the largest angle is 78°.
The altitude creates two right triangles containing acute angles of
 42° and 60°. The other acute angles into which the largest angle of the given scalene are divided are 48° and 30°. Therefore, the ratio is $30: 48=5: 8$ and $(a, b)=\underline{\mathbf{(5 , 8})}$.
B) $(a-12)+a+(a+12)=180 \Rightarrow a=60 \Rightarrow\{A, B, C\}=\left\{72^{\circ}, 60^{\circ}, 48^{\circ}\right\}$ in some order. Depending on the locations of the three angle measures, $m R F E D=72-60,72-48$, or $60-48$.
Thus, the only possible angle measures are $\underline{\mathbf{1 2}}$ and $\underline{\mathbf{2 4}}$.
The degree symbol is not necessary.

C) $12 n=180 \Rightarrow n=15 \Rightarrow P\left(45^{\circ}\right), B\left(60^{\circ}\right), J\left(75^{\circ}\right)$.
β, the non-bisected angle could be P, B or J.

$P: \beta=45^{\circ},(x, y)=(30,37.5) \Rightarrow \alpha=112.5 \Rightarrow \frac{\alpha}{\beta}=\frac{225}{90}=\frac{25}{10}=2.5$.
$B: \beta=60^{\circ},(x, y)=(37.5,22.5) \Rightarrow \alpha=120 \Rightarrow \frac{\alpha}{\beta}=2$.
$J: \beta=75^{\circ},(x, y)=(30,22.5) \Rightarrow \alpha=127.5 \Rightarrow \frac{\alpha}{\beta}=\frac{255}{150}=\frac{51}{30}=\underline{\mathbf{1 . 7}}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2018
 ROUND 7 TEAM QUESTIONS

ANSWERS

A) \qquad D) (\qquad , \qquad , \qquad , \qquad)
B) \qquad E) \qquad
C) \qquad F) \qquad
A) Let P_{1} be the point (a, b) in the complex plane corresponding to $a+b i=4+0 i$.

Let P_{n} be the point in the complex plane corresponding to $P_{n-1} \cdot \frac{1+i}{\sqrt{2}}$, for $n>1$.
This sequence of points determines a polygon whose area is K units 2. Compute K.
B) Consider the sequence of integral Pythagorean triplets (a, b, c), where a increases by 2, and $c=b+1 . \quad P_{1}=(3,4,5), P_{2}=(5,12,13), P_{3}=(7,24,25), \ldots$
Compute the area of the right triangle specified by P_{49}.
C) In rhombus $A B C D, B D=24, B C=16$,
$D C: C E=8: 1$ and $\overline{A F}, \overline{B E} \perp \stackrel{D}{D C}$
Compute the area of $\triangle F N D$.

D) Let $N=x^{2}+x y-6 y^{2}-8 x+6 y+12$

If $x=y$, then $N=0$ for $x=a$ and $x=b$, where $a<b$.
If $N=0$ and $y=t=a+b$, then $x=c$ or $x=d$, where $c<d$.
Compute the ordered quadruple (a, b, c, d).
E) Using the letters A to E, arrange the following from smallest to largest:

$$
A=\sin \left(-750^{\circ}\right) \quad B=\cos \left(-150^{\circ}\right) \quad C=\tan \left(840^{\circ}\right) \quad D=\sec \left(421^{\circ}\right) \quad E=\csc \left(-335^{\circ}\right)
$$

F) An isosceles triangle is called "exceptional", if and only if two of its angles have measures x and $k x$, where x and k are natural numbers and $k>1$. An equivalence class of triangles, denoted $E(T)$, contains all triangles which are similar to ΔT. Compute the number of distinct equivalence classes of exceptional triangles.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Team Round

A) $\frac{1+i}{\sqrt{2}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ corresponds to a point R in the complex plane on the unit circle centered at the origin (alternately referred to as the pole). Points R, the origin and P_{1} determine a 45° angle.

Multiplying by $\frac{1+i}{\sqrt{2}}$ "rotates" a given point 45° around the origin (in this case around a circle of radius 4). Thus, the P_{n} sequence determines a regular octagon with radius 4 .
Subdividing the octagon into 8 isosceles triangles, we have an area of
$8\left(\frac{1}{2} \cdot 4 \cdot 4 \cdot \sin 45^{\circ}\right)=64 \cdot \frac{\sqrt{2}}{2}=\underline{\mathbf{3 2} \sqrt{2}}$.
Converting from $(a+b i)$ to $(r c i s \theta)$ and applying DeMoivre's Theorem provides confirmation.
$4+0 i=4 \operatorname{cis} 0^{\circ}, \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=\operatorname{cis} 45^{\circ}$, and $P_{n}=4 \operatorname{cis} 0^{\circ} \cdot\left(\operatorname{cis} 45^{\circ}\right)^{n-1}=4 \operatorname{cis}\left(45^{\circ}(n-1)\right)$
$\Rightarrow P_{2}=4 c i s 45^{\circ}, P_{3}=4 c i s 90^{\circ}, \ldots, P_{8}=4 c i s 315^{\circ}, P_{9}=4 c i s 360^{\circ}=P_{1}$
Thus, we have 8 equally spaced points around a circle of radius 4 , vertices of a regular octagon.
B)

$\underline{\boldsymbol{n}}$	$\underline{\boldsymbol{a}}$	$\underline{\boldsymbol{b}}$	$\underline{\boldsymbol{c}}$	$\underline{\mathbf{S}}$	$\underline{1}^{\text {st }}$ Diff	$\underline{\mathbf{2}}^{\text {nd }}$ Diff	$\underline{3}^{\text {rd }}$ Diff
1	3	4	5	6			
2	5	12	13	30	24		
3	7	24	25	84	54	30	
4	9	40	41	180	96	42	12
5	11	60	61	330	150	54	12
6	13	84	85	546	216	66	12

Since the third differences are the same, the general formula is $3^{\text {rd }}$ degree, i.e., of the form $S=A n^{3}+B n^{2}+C n+D$. Substituting,
$n=1: A+B+C+D=6$
$\left.\begin{array}{l}n=2: 8 A+4 B+2 C+D=30 \\ n=3: 27 A+9 B+3 C+D=84 \\ n=4: 64 A+16 B+4 C+D=180\end{array}\right\} \Rightarrow\left\{\begin{array}{l}7 A+3 B+C=24 \\ 19 A+5 B+C=54 \\ 37 A+7 B+C=96\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}12 A+2 B=30 \\ 18 A+2 B=42\end{array} \Rightarrow 6 A=12 \Rightarrow(A, B)=(2,3)\right.$
$C=1, D=0 \Rightarrow P(n)=2 n^{3}+3 n^{2}+n=n(n+1)(2 n+1)$.
$\therefore P(49)=49 \cdot 50 \cdot 99=2450(100-1) \Rightarrow\left\{\begin{array}{c}245000 \\ -\quad 2450\end{array} \Rightarrow \underline{\mathbf{2 4 2 , 5 5 0}}\right.$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Team Round - continued

C) Let $D F=C E=x$ and $B E=A F=y$.

In $\triangle B E D,(9 x)^{2}+y^{2}=24^{2}=576$.
In $\triangle B E C, x^{2}+y^{2}=16^{2}=256$.
Subtracting, $80 x^{2}=320 \Rightarrow x=2, y=6 \sqrt{7}$.
Since $\triangle F N D \sim \triangle A N B$ and $\frac{D F}{B A}=\frac{F N}{A N}=\frac{1}{8}$,
$|\Delta F N D|=\frac{1}{2} \cdot F D \cdot F N=\frac{1}{2} x\left(\frac{1}{9} A F\right)=\frac{x y}{18}=\frac{2(6 \sqrt{7})}{18}=\frac{\mathbf{2}}{\mathbf{3}} \sqrt{\mathbf{7}}$.

D) Let $x=y=k$. Then:
$k^{2}+k^{2}-6 k^{2}-8 k+6 k+12=-4 k^{2}-2 k+12=-2\left(2 k^{2}+k-6\right)=-2(2 k-3)(k+2)=0 \Rightarrow k=\frac{3}{2},-2$
Therefore, $(a, b)=\left(-2, \frac{3}{2}\right) \Rightarrow y=t=-\frac{1}{2}$.
Substituting for y is only slightly painful, and we could proceed as above and find the corresponding x-values, but for nastier y-values, finding the corresponding x-values could become very tedious. Another approach might be to set N equal to 0 , factor N, treating the expression as a quadratic (in x), namely, $N=x^{2}+(y-8) x-6\left(y^{2}-y-2\right)=0$.
Using the quadratic formula, we have $x=\frac{(8-y) \pm \sqrt{(y-8)^{2}+24\left(y^{2}-y-2\right)}}{2}$
This may look awful, but let's examine the discriminant.
$(y-8)^{2}+24\left(y^{2}-y-2\right)=25 y^{2}-40 y+16=(5 y-4)^{2}$ and the radical disappears.
$x=\frac{(8-y) \pm(5 y-4)}{2}=\frac{4 y+4}{2}, \frac{-6 y+12}{2}=2 y+2,6-3 y$
$\left\{\begin{array}{l}x=2 y+2 \text { or } y=\frac{x-2}{2} \text { or } x-2 y-2=0 \\ x=6-3 y \text { or } y=\frac{6-x}{3} \text { or } x+3 y-6=0\end{array}\right.$
(An aside: Notice that we have factored the given expression as $(x-2 y-2)(x+3 y-6)!!$) The boxed expressions make it easy to find x for a given y-value. $y=-\frac{1}{2} \Rightarrow x=1, \frac{15}{2} \Rightarrow(c, d)=\left(1, \frac{15}{2}\right)$ and the required ordered quadruple is $\left(-\mathbf{2}, \frac{\mathbf{3}}{\mathbf{2}}, \mathbf{1}, \frac{\mathbf{1 5}}{\mathbf{2}}\right)$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2018 SOLUTION KEY

Team Round - continued

E) Simplifying and evaluating, where possible, we have

$$
\begin{aligned}
& A=\sin \left(-750^{\circ}\right)=\sin \left(-30^{\circ}\right)=-\frac{1}{2} \\
& B=\cos \left(-150^{\circ}\right)=\cos \left(150^{\circ}\right)=-\frac{\sqrt{3}}{2} \\
& C=\tan \left(840^{\circ}\right)=\tan \left(120^{\circ}\right)=-\sqrt{3} \\
& D=\sec \left(421^{\circ}\right)=\sec \left(61^{\circ}\right)=\csc \left(29^{\circ}\right)=\frac{1}{\sin \left(29^{\circ}\right)} \\
& E=\csc \left(-335^{\circ}\right)=\csc \left(25^{\circ}\right)=\frac{1}{\sin \left(25^{\circ}\right)} .
\end{aligned}
$$

Clearly, D and E are positive values and, since the sine is an increasing function in the first quadrant, $\sin \left(29^{\circ}\right)>\sin \left(25^{\circ}\right)>0$ and taking the reciprocals, $E>D$.
Thus, the correct order is CBADE.
F) Case 1: Suppose the vertex angle is x° and each base angle is $(k x)^{\circ}$

Then: $x+2(k x)=x(2 k+1)=180 \Rightarrow x=\frac{180}{2 k+1}$
Clearly, we require $2 k+1$ be an ODD factor of 180 .
Since $180=2^{2}\left(3^{2} 5^{1}\right)$, we see that 180 has 18 factors and 6 of
 them are odd, namely, $1,3,5,9,15,45 .[1(k=0)$ and $3(k=1)$ are eliminated, since we are given $k>1$.)

$$
\begin{aligned}
& 2 k+1=5,9,15,45 \Rightarrow k=2,4,7,22 \Rightarrow x=36,20,12,4 \text { (4 values) } \\
& \Rightarrow(A, B, C)=(36,54,54),(20,70,70),(12,84,84),(4,88,88)
\end{aligned}
$$

Case 2: Suppose the vertex angle is $(k x)^{\circ}$ and each base angle is x°
Then: $k x+2(x)=x(k+2)=180 \Rightarrow x=\frac{180}{k+2}$

Clearly, we require that $k+2$ be a factor of 180 , and it can be either even or odd. Since $k+2 \neq 1,2,3$, we set up the following table to track the remaining 15 factors of 180 .
We are interested only in whether there are duplicates, and completing the table is not necessary to verify that there are none and that the answer is $4+15=\underline{\mathbf{1 9}}$.
The table is included as an FYI.

$k+2$	4	5	6	9	10	12	15	18	20	30	36	45	60	90	180
k	2	3	4	7	8	10	13	16	18	28	34	43	58	88	178
x	45	36	30	20	18	15	12	10	9	6	5	4	3	2	1
$k x$	90	108	120	140	144	150	156	160	162	168	170	172	174	176	178

Round 1 Algebra 2: Complex Numbers (No Trig)
A) $(-\sqrt{2}, 6 \sqrt{2})$
B) $2 \sqrt[4]{2}$
C) -12

Round 2 Algebra 1: Anything
A) -8
B) 12
C) 17.2

Round 3 Plane Geometry: Area of Rectilinear Figures
A) 5
B) 90
C) $(3.5,14,15)$

Round 4 Algebra: Factoring and its Applications
A) 10
B) 210
C) $-7 \leq x \leq-6, x=0,6 \leq x \leq 7$

Round 5 Trig: Functions of Special Angles
A) $\frac{\sqrt{3}}{2}$
B) $\frac{\sqrt{5}}{2}$
C) $\frac{\sqrt{6}-\sqrt{2}}{4}$

Round 6 Plane Geometry: Angles, Triangles and Parallels
A) $(5,8)$
B) $12^{\circ}, 24^{\circ}$
C) 1.7

Team Round

A) $32 \sqrt{2}$
D) $\left(-2, \frac{3}{2}, 1, \frac{15}{2}\right)$
B) 252,540
E) CBADE
C) $\frac{2}{3} \sqrt{7}$
F) 19

