MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5-FEBRUARY 2018
 ROUND 1 ALGEBRA 2: ALGEBRAIC FUNCTIONS

ANSWERS

A) \qquad
B) (\qquad , \qquad)
C) \qquad
A) $(x, y)=(0,0)$ is a solution to the system $\left\{\begin{array}{l}4 k x-3 y=0 \\ 7 x+8 y=0\end{array}\right.$.

For what value of the constant k will the system have a solution other than $(x, y)=(0,0)$?
B) A linear function $y=m x+b$ is defined by the parametric equations $\left\{\begin{array}{l}x=\frac{2 t-1}{3} \\ y=\frac{3-t}{4}\end{array}\right.$.

Compute the ordered pair (m, b).
C) $y=P(x)$ defines a cubic function for which $P(a)=-P(-a)$.

When $P(x)$ is divided by $(x+3)$, the remainder is 6 .
When $P(x)$ is divided by $(x-2)$, the remainder is 4. Compute the zeros of $y=P(x)$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2018 SOLUTION KEY

Round 1

A) This pair of lines is intersecting, parallel or coincident (the same line).

Since both lines pass through the origin, i.e. $(0,0)$ is a solution, only in the last case can there be another. Thus, the slopes must be equal, namely, $m=\frac{4 k}{3}=\frac{-7}{8} \Rightarrow k=\underline{-\frac{\mathbf{2 1}}{\mathbf{3 2}}}$ or $\underline{\mathbf{0 . 6 5 6 2 5}}$.

Alternate solution: This system is indeterminate if and only if the determinant of the matrix of coefficients is zero. $\left|\begin{array}{cc}4 k & -3 \\ 7 & 8\end{array}\right|=0 \Rightarrow 32 k+21=0 \Rightarrow k=\underline{-\frac{\mathbf{2 1}}{\mathbf{3 2}}}$.
B) Solving the parametric equations for t, we have $t=\frac{3 x+1}{2}$ and $t=\frac{3-4 y}{1}$.

Cross multiplying $3 x+1=6-8 y \Rightarrow y=m x+b=\frac{-3 x+5}{8} \Rightarrow(m, b)=\left(-\frac{\mathbf{3}}{\mathbf{8}}, \frac{\mathbf{5}}{\mathbf{8}}\right)$.
C) Let $P(x)=A x^{3}+B x^{2}+C x+D$

Since $P(a)=-P(-a), B=D=0$ and $P(x)=A x^{3}+C x$.
$\left\{\begin{array}{l}P(-3)=-27 A-3 C=6 \Leftrightarrow 9 A+C=-2 \\ P(2)=8 A+2 C=4 \Leftrightarrow 4 A+C=2\end{array}\right.$
Subtracting, $5 A=-4 \Rightarrow A=-\frac{4}{5}$. Substituting in the second equation above, $4\left(-\frac{4}{5}\right)+C=2 \Rightarrow C=\frac{26}{5}$

FYI: The condition $P(-a)=-P(-a)$ defines an odd function, i.e., a function which is symmetric with respect to the origin. If the function passes through the point (a, b), then it also passes through $(-a,-b)$.
The graph of $y=P(x)$ is shown at the right.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 5 - FEBRUARY 2018 ROUND 2 ARITHMETIC / NUMBER THEORY

ANSWERS

A) \qquad
B) (\qquad , \qquad)
C) \qquad
A) N is a two-digit prime. If the digits of N are reversed, we obtain a number with an odd number of factors. Compute the smallest possible value of N.
B) Compute the ordered pair (a, b) for which the eight-digit base ten integer $N=437213 a b$ is divisible by 72 .
C) Given: x and y are positive integers, where $x<4$ and $y<4$.

If x is added to one of the exponents in the prime factorization of 17280, the exponents (in some order) form an arithmetic sequence.
If y is added to one of the exponents in the prime factorization of 17280, the exponents (in some order) form a geometric sequence.
A new number Q with k divisors is formed from the prime factorization of 17280 by adding x to one of the exponents and adding y to a different exponent.
Compute all possible values of k.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5-FEBRUARY 2018 SOLUTION KEY

Round 2

A) Since only perfect squares have an odd number of factors, we examine perfect squares until we find one which produces a prime when the digits are reversed.
$2^{2}=44,3^{2}=2,4^{2}=16 \Rightarrow \underline{\mathbf{6 1}}$ which is prime.
To confirm that this is the smallest value of N, we examine the reversals of the two-digit primes smaller than 61 , namely, $11,13,17,19,23,29,31,37,41,43,47,53,59$.
None produce a perfect square. $61 \Rightarrow 16=2^{4} \Rightarrow 1,2,4,8,16$
B) N must be divisible by 8 and 9 .

To guarantee divisibility by 9 , the sum of all the digits must be divisible by 9 .
To guarantee divisibility by 8 , the 3-digit integer $3 a b$ must be divisible by 8 .
Thus, $20+a+b$ must equal 27 or 36 .
$a+b=7$ or 16
Since b must be even, we consider $(a, b)=(1,6),(5,2),(3,4)$ and $(8,8)$.
Only (5,2) satisfies divisibility by 8 .
C) $17280=2^{7} \cdot 3^{3} \cdot 5^{1}$

Since the arithmetic sequence must be $1,4,7$ (for $x=1$).
Since the geometric sequence must be $1,3,9$ (for $y=2$).
Therefore, there are 6 possible sets of exponents of the prime factorization of Q :
$2,1,0 \Rightarrow\{9,4,1\} \Rightarrow 2^{9} 3^{4} 5^{1} \Rightarrow 10 \cdot 5 \cdot 2=\underline{\mathbf{1 0 0}}$ factors
$1,2,0 \Rightarrow\{8,5,1\} \Rightarrow 9 \cdot 6 \cdot 2=\underline{\mathbf{1 0 8}}$ factors
$2,0,1 \Rightarrow\{9,3,2\} \Rightarrow 10 \cdot 4 \cdot 3=\underline{\mathbf{1 2 0}}$ factors
$1,0,2 \Rightarrow\{8,3,3\} \Rightarrow 9 \cdot 4 \cdot 4=\underline{\mathbf{1 4 4}}$ factors
$0,1,2 \Rightarrow\{7,4,3\} \Rightarrow 8 \cdot 5 \cdot 4=\underline{\mathbf{1 6 0}}$ factors
$0,2,1 \Rightarrow\{7,5,2\} \Rightarrow 8 \cdot 6 \cdot 3=144$ factors
Thus, the 6 sets give only 5 distinct results.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 5 - FEBRUARY 2018

ROUND 3 TRIG: IDENTITIES AND/OR INVERSE FUNCTIONS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Compute:

$$
\left(\sin \left(\operatorname{Cos}^{-1}(-1)-\operatorname{Sin}^{-1}\left(-\frac{1}{2}\right)\right)\right)^{3}
$$

B) Compute:

$$
\cot \left(\operatorname{Sin}^{-1}\left(-\frac{3}{5}\right)-\operatorname{Cos}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)
$$

C) Compute all values of x, where $0^{\circ} \leq x<360^{\circ}$, that satisfy

$$
\cos \left(40^{\circ}\right)-\cos \left(20^{\circ}\right)=\sin \left(x+30^{\circ}\right)+\sin \left(x+150^{\circ}\right)
$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2018 SOLUTION KEY

Round 3

A) $\left(\sin \left(\operatorname{Cos}^{-1}(-1)-\operatorname{Sin}^{-1}\left(-\frac{1}{2}\right)\right)\right)^{3}=\left(\sin \left(\pi-\left(-\frac{\pi}{6}\right)\right)\right)^{3}=\sin ^{3}\left(\frac{7 \pi}{6}\right)=\left(-\frac{1}{2}\right)^{3}=-\frac{\mathbf{1}}{\mathbf{8}}$.
B) Let $A=\operatorname{Sin}^{-1}\left(-\frac{3}{5}\right)$ and $B=\frac{3 \pi}{4}$. Then:
$\cot (A-B)=\frac{1+\tan A \tan \left(\frac{3 \pi}{4}\right)}{\tan A-\tan \left(\frac{3 \pi}{4}\right)}=\frac{1+\left(-\frac{3}{4}\right)(-1)}{\left(-\frac{3}{4}\right)-(-1)}=\frac{7 / 4}{1 / 4}=\underline{\mathbf{7}}$.

C)
$\cos \left(40^{\circ}\right)-\cos \left(20^{\circ}\right)=-2 \sin \left(\frac{40^{\circ}+20^{\circ}}{2}\right) \sin \left(\frac{40^{\circ}-20^{\circ}}{2}\right)=-2 \sin 30^{\circ} \sin 10^{\circ}=-\sin 10^{\circ}$ $\sin \left(x+30^{\circ}\right)+\sin \left(x+150^{\circ}\right)=\underline{\sin x \cos 30^{\circ}}+\sin 30^{\circ} \cos x+\underline{\sin x \cos 150^{\circ}}+\sin 150^{\circ} \cos x$ Since $\cos 150^{\circ}=-\cos 30^{\circ}$, the underlined terms cancel out and we have $\sin 30^{\circ} \cos x+\sin 150^{\circ} \cos x=2 \sin 30^{\circ} \cos x=\cos x$
Therefore, the original equation simplifies to $\cos x=-\sin 10^{\circ} \Leftrightarrow \cos x=-\cos 80^{\circ} \Leftrightarrow \cos x=\cos 100^{\circ}$
Thus, $x=\underline{\mathbf{1 0 0}}^{\circ}$ or the related value in quadrant 3 , namely, $\underline{\mathbf{2 6 0}}^{\circ}$, since $\cos 100^{\circ}$ is negative.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5-FEBRUARY 2018 ROUND 4 ALGEBRA 1: WORD PROBLEMS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) How many cc (cubic centimeters) of a 90% solution of alcohol should be mixed with a 40% solution of alcohol to form 90 cc of a 60% solution?
B) The Red Sox win exactly 4 of their first 9 games. If they win exactly 75% of their remaining games, what is the minimum number of additional games they must play to raise their winning percentage to at least 64% ?
C) I travelled from A to B at an average speed of 60 mph and returned from B to A at an average speed of 72 mph . In my haste, I forgot the keys to my apartment and had to return to B over the same route to retrieve them, travelling at an average of $k \mathrm{mph}$.
My overall average for the A-B-A-B trip was 54 mph . The traffic on my last leg was just awful. Compute k.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2018 SOLUTION KEY

Round 4

A) $0.9 x+0.4(90-x)=0.6(90) \Rightarrow 9 x+360-4 x=540 \Rightarrow 5 x=180 \Rightarrow x=\underline{\mathbf{3 6}}$.
B) Let x denote the number of additional games which must be played.

Note x must be a multiple of 4 to insure that the Red Sox can win exactly 75% of these games.
$4+\frac{3}{4} x \geq \frac{64}{100}(9+x) \Rightarrow 4+0.75 x \geq 5.76+0.64 x$
$\Rightarrow 0.11 x \geq 1.76 \Rightarrow x \geq 16$
Since 16 is a multiple of 4 , the minimum number of additional games is $\underline{\mathbf{1 6}}$.
C) This is not a simple $\frac{60+72+k}{3}=54$ calculation, since I travelled at these speeds for different amounts of time. A weighted average is required.
Pick any convenient distance for AB (any will do). I'll use the $\operatorname{LCM}(60,72)$, namely 360.
I travelled $3(360)$ miles in $6+5+\frac{360}{k}$ hours $\Rightarrow \frac{1080}{11+\frac{360}{k}}=54 \Rightarrow 20=11+\frac{360}{k} \Rightarrow k=\underline{\mathbf{4 0}}$.
Check that $\frac{60+72+k}{3}=54 \Rightarrow k=30$ is incorrect!
@60, 72 and 30 mph , legs of 360 miles would take 6 hours, 5 hours and 12 hours respectively. The average speed would be $\frac{\text { Total distance travelled }}{\text { total time taken }}=\frac{3(360)}{6+5+12}=\frac{1080}{23} \neq 54$.
Can you show that for any arbitrary distance between A and $\mathrm{B}, k=30$ is incorrect?

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5-FEBRUARY 2018 ROUND 5 PLANE GEOMETRY: CIRCLES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) In circle $O, r=30$. Chord $\overline{A E}$ is perpendicular to diameter $\overline{B D}$ at point C.

If $A E=48$ and C is closer to D than to B, compute $A D$.
B) $\stackrel{\text { Pu }}{P A}$ is tangent to circle O at point $A, P B=1$, and $P A=B C$. Compute $O A$.

C) The ring between two concentric circles has width 4 .

Two perpendicular chords $\overline{A B}$ and $\overline{C D}$ are tangent to the inner circle and intersect at point P. If $P C=1$, compute all possible radii of the inner circle.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2018 SOLUTION KEY

Round 5

$$
\begin{equation*}
(O C, A C, A O)=(?, 24,30)=6(\tag{,4,5}
\end{equation*}
$$

\qquad
A) In $\triangle A O C, \Rightarrow O C=6 \cdot 3=18$

$$
\Rightarrow C D=12
$$

In $\triangle A C D$,

$$
(A C, C D, A D)=(24,12, ?)=12(2,1, \ldots)
$$

$$
\Rightarrow A D=12 \cdot \sqrt{5}=\underline{\mathbf{1 2}} \sqrt{\mathbf{5}} .
$$

B) Using the secant-tangent relation, we have
$x^{2}=1(1+x) \Rightarrow x^{2}-x-1=0 \Rightarrow x=\frac{1+\sqrt{5}}{2}=g$ (the golden ratio)
$\therefore \overline{O A}$ (a radius) $=\frac{1}{2} g=\frac{\frac{1+\sqrt{5}}{4}}{4}$
Alternately, by the Pythagorean Theorem,

$x^{2}+\left(\frac{x}{2}\right)^{2}=\left(1+\frac{x}{2}\right)^{2} \Rightarrow \frac{5}{4} x^{2}=1+x+\frac{x^{2}}{4} \Rightarrow x^{2}-x-1=0$ and the same result follows.
C) Case 1: $P C=1$ (P closer to C)

Applying the Product-Chord Theorem at point T,
$(r+1)^{2}=4(2 r+4)$
$\Rightarrow r^{2}-6 r-15=0$
$\Rightarrow r=\frac{6 \pm \sqrt{36+60}}{2}=\underline{\mathbf{3}+\mathbf{2} \sqrt{6}}, \underline{3}+2 \sqrt{6}$
Case 2: $(P$ closer to $D)$ - reverse C and D in the diagram $P C<2 r+4$ and $P C=1 \Rightarrow r>-1.5$, but this is always true, so we proceed as follows:
Let $P D=x$ Then: $C D=x+1 \Rightarrow C T=\frac{x+1}{2}$

$\left(\frac{x+1}{2}\right)^{2}=4(2 r+4) \Leftrightarrow(x+1)^{2}=32(r+2)$
$\Rightarrow P T=r=\frac{1-x}{2} \Rightarrow x=1-2 r$
Substituting, $(2-2 r)^{2}=32(r+2) \Leftrightarrow(1-r)^{2}=8 r+16$
$\Rightarrow r^{2}-10 r-15=0 \Rightarrow r=\frac{10 \pm \sqrt{100+60}}{2}=5+2 \sqrt{10}, 5-2 \sqrt{10}$
$r=5+2 \sqrt{10} \Rightarrow x<0$ and must be rejected also.
Thus, the radius of the inner circle is unique, namely $\underline{3+2 \sqrt{6}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5-FEBRUARY 2018
 ROUND 6 ALGEBRA 2: SEQUENCES AND SERIES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) The first term $\left(t_{1}\right)$ of a sequence is 71 . To find subsequent terms follow this rule:

- if a term is even, the next term is half the current term
- if a term is odd, the next term is 1 more than the current term

Eventually, t_{n} becomes 1. Compute the smallest value of n for which $t_{n}=1$.
B) Given: $f(x)=a x^{2}+b x+c$, where $f(1), f(2), f(3)$ is a geometric progression which has a constant multiplier of 3 and $f(1)+f(2)+f(3)=13$. Compute $f(-1)$.
C) The sum of an infinite geometric series is 9 and the sum of its first two terms is 5 .

Compute the two possible ordered pairs (a, r), where a is the first term of the series and r is the common ratio.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2018 SOLUTION KEY

Round 6

A) Rules: if a term is even, the next term is half the current term if a term is odd, the next term is 1 more than the current term
Applying the rules, $71 \Rightarrow 72 \Rightarrow 36 \Rightarrow 18 \Rightarrow 9 \Rightarrow 10 \Rightarrow 5 \Rightarrow 6 \Rightarrow 3 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$. Thus, the $12^{\text {th }}$ term has become 1 and $n=\underline{\mathbf{1 2}}$.
B) $f(1)=p, f(2)=3 p, f(3)=9 p \Rightarrow 13 p=13 \Rightarrow p=1$
$f(1)=1, f(2)=3, f(3)=9$
Substituting for x in $a x^{2}+b x+c$,

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ f (1) = a + b + c = 1 } \\
{ f (2) = 4 a + 2 b + c = 3 } \\
{ f (3) = 9 a + 3 b + c = 9 }
\end{array} \Rightarrow \left\{\begin{array}{l}
3 a+b=2 \\
5 a+b=6
\end{array} \Rightarrow 2 a=4 \Rightarrow(a, b, c)=(2,-4,3)\right.\right. \\
& \Rightarrow f(-1)=a-b+c=\underline{\mathbf{9}}
\end{aligned}
$$

C) $\left\{\begin{array}{l}a+a r+a r^{2}+\ldots=9 \\ a+a r=5\end{array} \Rightarrow\left\{\begin{array}{l}\frac{a}{1-r}=9 \\ a(1+r)=5\end{array}\right.\right.$

Then: $a=9(1-r)$ Substituting,

$$
\begin{aligned}
& 9(1-r)(1+r)=9\left(1-r^{2}\right)=5 \Rightarrow 1-r^{2}=\frac{5}{9} \Rightarrow r^{2}=\frac{4}{9} \Rightarrow r= \pm \frac{2}{3} \\
& r=\frac{2}{3} \Rightarrow a=9\left(1-\frac{2}{3}\right) \Rightarrow(a, r)=\underline{\left(\mathbf{3}, \frac{\mathbf{2}}{\mathbf{3}}\right)} . \\
& r=-\frac{2}{3} \Rightarrow a=9\left(1+\frac{2}{3}\right) \Rightarrow(a, r)=\left(\mathbf{1 5},-\frac{\mathbf{2}}{\mathbf{3}}\right) .
\end{aligned}
$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5-FEBRUARY 2018
 ROUND 7 TEAM QUESTIONS

ANSWERS

A) \qquad D) \qquad
B) (\qquad , \qquad , \qquad) E) \qquad
C) \qquad F) \qquad
A) The function defined by $y=f(x)=A x^{2}+B x+C$ passes through $(5,15)$ and $(1,-17)$ and has a minimum value at $x=2 . y=g(x)=f(x+h)$ has a minimum at $x=-\frac{3}{2}$. Compute all values of x for which $g(x)=15$.
B) Determine the unique triple of integers (a, b, c), with $a \leq b \leq c$, for which $\frac{17}{40}=\frac{1}{a}+\frac{1}{a b}+\frac{1}{a b c}$.
C) Compute all possible values of $\underline{\cos x}$, if $\tan \frac{x}{2}+\cot x+\csc x \sec 2 x=\tan 2 x$
D) The current in the Saco River is $k \mathrm{mph}$, where $k<4$.

Suppose the bionic Mr. Phelps can swim at a steady rate of 440 feet in 75 seconds. Swimming upstream (against the current) for t minutes he can swim the same distance as he can downstream in $(t-10)$ minutes. If $t+4 k=26$, compute this distance (in feet).
E) In $\triangle A B C$, where $\overline{A B} \perp \overline{B C}$ is a right angle, $\left\{\begin{array}{l}A B=x+4 y-4 \\ A C=7 y-x+3 \\ B C=\frac{1}{2} x+3 y-1\end{array}\right.$.

The diameter of the inscribed circle is $2 x-y+1$ and the diameter of the circumscribed circle is $3 x+2 y-4$. Compute the perimeter of $\triangle A B C$.
F) An arithmetic sequence of n terms has a first term of 2.5 , a common difference of $-\frac{2}{3}$, and an integer sum S. Compute the sum of the largest five integer values of S.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2018 SOLUTION KEY

Team Round

A) $(5,15) \Rightarrow(\# 1) 25 A+5 B+C=15$
$(1,-17) \Rightarrow(\# 2) A+B+C=-17$
We need a third equation. If you know calculus, you'd use a derivative; otherwise, you would complete the square. $A x^{2}+B x+C=A\left(x+\frac{B}{2 A}\right)^{2}+C-\frac{B^{2}}{4 A}$
Reminiscent of the derivation of the quadratic formula!
For $y=f(x)$ to have a minimum, $A<0$.
The minimum occurs when $x+\frac{B}{2 A}=0$ or $x=-\frac{B}{2 A}$ and the minimum value is $C-\frac{B^{2}}{4 A}$.
$-\frac{B}{2 A}=2 \Rightarrow(\# 3) B=-4 A$
Subtracting (\#1-\#2), we have $24 A+4 B=32 \Leftrightarrow 6 A+B=8$
Substituting (using \#3), we have $6 A-4 A=8 \Rightarrow A=4, B=-16, C=-5$
$y=4 x^{2}-16 x-5=4(x-2)^{2}-21$ (A minimum value of -21 at $x=2$.)
$g(x)=A(x+h)^{2}+B(x+h)+C=A x^{2}+(2 A h+B) x+\left(A h^{2}+B h+C\right)=4 x^{2}+8(h-2) x+\left(4 h^{2}-16 h-5\right)$
Since $y=f(x+h)$ just shifts $y=f(x)$ left or right depending on the sign of h, the minimum values of both are the same, namely -21 , and the shift is from 2 to $-\frac{3}{2}$, that is $h=2-\left(-\frac{3}{2}\right)=\frac{7}{2}$. Therefore, substituting for h, we have $g(x)=4 x^{2}+12 x-12$. $g(x)=4 x^{2}+12 x-12=15 \Rightarrow 4 x^{2}+12 x-27=(2 x-3)(2 x+9)=0 \Rightarrow x=\frac{\mathbf{3}}{\underline{\mathbf{2}}},-\frac{\mathbf{9}}{\mathbf{2}}$
Note: $g(x)=4 x^{2}+12 x-12=4\left(x+\frac{3}{2}\right)^{2}-21$, confirming the minimum value is unchanged.
B) $\frac{17}{40} \geq \frac{1}{a} \Rightarrow 17 a \geq 40 \Rightarrow a=3$
$\frac{17}{40}-\frac{1}{3}=\frac{51-40}{120}=\frac{11}{120}$
$\frac{11}{120} \geq \frac{1}{a b}=\frac{1}{3 b} \Leftrightarrow 33 b \geq 120 \Rightarrow b=4$
$\frac{11}{120}-\frac{1}{12}=\frac{1}{120}$
$\frac{1}{120} \geq \frac{1}{12 c} \Rightarrow c=10 \Rightarrow(a, b, c)=\underline{(\mathbf{3}, \mathbf{4 , 1 0})}$

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 5 - FEBRUARY 2018 SOLUTION KEY

Team Round - continued

C) Given: $\tan \frac{x}{2}+\cot x+\csc x \sec 2 x=\tan 2 x$
$\frac{x}{2} \neq 90^{\circ}+\left(180^{\circ}\right) n, x \neq 0^{\circ}+\left(180^{\circ}\right) n, 2 x \neq 90^{\circ}+\left(180^{\circ}\right) n$
Consolidating, excluded values (which cause division by zero) are: $0^{\circ}+\left(180^{\circ}\right) n, 45^{\circ}+\left(90^{\circ}\right) n$
Applying basic identities,
$\tan \frac{x}{2}+\cot x+\csc x \sec 2 x=\tan 2 x=\frac{1-\cos x}{\sin x}+\frac{\cos x}{\sin x}+\frac{1}{\sin x \cos 2 x}=\frac{\sin 2 x}{\cos 2 x}$
Combining terms, we have $\frac{\cos 2 x+1}{\sin x \cos 2 x}=\frac{\sin 2 x}{\cos 2 x}$.
Since $\cos 2 x \neq 0$, the common term in the denominator can be ignored. Cross-multiplying,
we have $\cos 2 x+1=\sin 2 x \sin x$
$\Leftrightarrow 2 \cos ^{2} x=2 \sin ^{2} x \cos x$
$\Leftrightarrow 2 \cos ^{2} x=2\left(1-\cos ^{2} x\right) \cos x$
$\Leftrightarrow 2 \cos x\left(\cos ^{2} x+\cos x-1\right)=0$
$\Leftrightarrow \cos x=\mathbf{0}, \frac{-\mathbf{1 + \sqrt { 5 }}}{2} .\left(\frac{-1-\sqrt{5}}{2}<-1\right.$ and must be rejected.)
It is left to you to verify that both of these values check in the original equation.
D) $\frac{440 \text { feet }}{75 \mathrm{sec}}=\frac{440 \mathrm{feet}}{\frac{75}{60} \mathrm{~min}}=440 \cdot \frac{4}{5}=352 \mathrm{ft} / \mathrm{min}$

Upstream: $(352-88 k) t \quad$ Downstream: $(352+88 k)(t-10)$
Equating, $358 t-88 k t=358 t-3520+88 k t-880 k$
$\Leftrightarrow 176 k t=3520+880 k \Leftrightarrow 2 k t=40+10 k \Rightarrow k=\frac{20}{t-5}$
Given $t+4 k=26$, we substitute $k=\frac{20}{(26-4 k)-5}=\frac{20}{21-4 k}$

$$
\Rightarrow 4 k^{2}-21 k+20=(4 k-5)(k-4)=0
$$

$k=4 \Rightarrow t \geq 1$ is rejected since this leaves no time to swim downstream.
Thus, $k=1.25 \Rightarrow t=21$ and the distance swam upstream and downstream is $\left(352-88 \cdot \frac{5}{4}\right)(21)=242 \cdot 21=\underline{\mathbf{5 0 8 2}}$ feet.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2018 SOLUTION KEY

Team Round - continued

E) The perimeter P of $\triangle A B C$ is $P=(x+4 y-4)+(7 y-x+3)+\left(\frac{1}{2} x+3 y-1\right)=\frac{1}{2} x+14 y-2$.

The diameter of the circumscribed circle is $\overline{A C}$, so $7 y-x+3=3 x+2 y-4 \Rightarrow 4 x-5 y=7$.
Since $A B+B C-A C$ is the diameter of the inscribed circle (proof below),
$(x+4 y-4)+\left(\frac{1}{2} x+3 y-1\right)-(7 y-x+3)=2 x-y+1 \Leftrightarrow \frac{1}{2} x+y=9$
Solving the two boxed equations, $-(4 x-5 y=7)+8\left(\frac{1}{2} x+y=9\right) \Rightarrow 13 y=65 \Rightarrow y=5, x=8$
Substituting x and y into P, we have the perimeter is $\frac{1}{2}(8)+14(5)-2=\underline{\mathbf{7 2}}$.
Proof:
$|\triangle A B C|=\frac{1}{2} r x+\frac{1}{2} r y+\frac{1}{2} r z=\frac{1}{2} x y \Rightarrow r=\frac{x y}{x+y+z}$
We need to show that an equivalent expression for the diameter of the inscribed circle is

$$
x+y-z \text { or, } r=\frac{x+y-z}{2} .
$$

Cross-multiplying, we show that this an identity.

$$
\begin{aligned}
2 x y & =(x+y-z)(x+y+z)=(x+y)^{2}-z^{2} \\
& =x^{2}+2 x y+y^{2}-z^{2}=2 x y+\left(x^{2}+y^{2}-z^{2}\right)
\end{aligned}
$$

But, since $\triangle A B C$ is a right triangle, $x^{2}+y^{2}=z^{2}$, and the identity is established.

F) $S=\frac{n}{2}(2 a+(n-1) d) \Rightarrow S=\frac{n}{2}\left(5+(n-1) \cdot-\frac{2}{3}\right)=\frac{n}{2}\left(\frac{15-2 n+2}{3}\right)=\frac{n(17-2 n)}{6}$

Clearly, S can be an integer only when n is even. Testing even values of n, a pattern emerges. In successive groups of 3 consecutive even integers (starting with 2, 4, 6), the first fails and the second and third produce an integer value.
$n=4,6,10,12,16 \Rightarrow 6,5,-5,-14,-40 \Rightarrow S=\underline{-48}$.
Since the values of S are clearly decreasing, the first 5 values listed are the largest.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5-FEBRUARY 2018 ANSWERS

Round 1 Algebra 2: Algebraic Functions
A) $-\frac{21}{32}($ or -0.65625$)$
B) $\left(-\frac{3}{8}, \frac{5}{8}\right)$
C) $0, \pm \frac{\sqrt{26}}{2}$

Round 2 Arithmetic/ Number Theory
A) 61
B) $(5,2)$
C) $100,108,120,144,160$ (in any order)

Round 3 Trig Identities and/or Inverse Functions
A) $-\frac{1}{8}$
B) 7
C) 100,260

Round 4 Algebra 1: Word Problems
A) 36
B) 16
C) 40

Round 5 Geometry: Circles
A) $12 \sqrt{5}$
B) $\frac{1+\sqrt{5}}{4}$
C) $3+2 \sqrt{6}$ only

Round 6 Algebra 2: Sequences and Series
A) 12
B) 9
C) $\left(3, \frac{2}{3}\right),\left(15,-\frac{2}{3}\right)$

Team Round
A) $\frac{3}{2},-\frac{9}{2}$
B) $(3,4,10)$
C) $0, \frac{-1+\sqrt{5}}{2}$
D) 5082
E) 72
F) -48

