MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2018 ROUND 1 ANALYTIC GEOMETRY: ANYTHING

ANSWERS

A) Given: P(-6, 4) and Q(2, 10) \overline{PQ} is a diameter of a circle defined by $(x-h)^2 + (y-k)^2 = r^2$ Compute the ordered triple (h, k, r).

B) The ellipses $2x^2 + 3y^2 - 8x + 6y - 48 = 0$ and $3x^2 + 2y^2 - 12x + 4y - 52 = 0$ intersect in 4 points which lie on a circle. Find the center and radius of this circle.

C) Given: Hyperbola $H: \frac{(x-5)^2}{400} - \frac{(y+3)^2}{441} = 1$ The horizontal line y = 3 intersects the <u>asymptotes</u> of *H* at points *P* and *Q*. Compute *PQ*.

Round 1

A) The center of the circle is the midpoint of $\overline{PQ} - \left(\frac{-6+2}{2}, \frac{4+10}{2}\right) = C(-2, 7)$.

The radius of the circle is CQ (or CP). Between points P and Q, the change in x is 8; the change in y is 6. We recognize the Pythagorean Triple (6, 8, 10). $PQ = 10 \Rightarrow r = 5$. Thus, (h, k, r) = (-2, 7, 5).

- B) Adding the equations, $\begin{cases} 2x^2 + 3y^2 8x + 6y 48 = 0\\ 3x^2 + 2y^2 12x + 4y 52 = 0 \end{cases}$, we get $5x^2 + 5y^2 - 20x + 10y - 100 = 0 \Leftrightarrow x^2 + y^2 - 4x + 2y - 20 = 0.$ Completing the square, $(x^2 - 4x + 4) + (y^2 + 2y + 1) = 20 + 4 + 1 = 25 \Leftrightarrow (x - 2)^2 + (y + 1)^2 = 5^2$ $\Rightarrow \text{Center: } (2, -1) \text{ Radius: } 5$
 - <u>FYI</u>: One of the 4 points is (6, 2) and the other three can be found without too much additional effort.
- C) $\frac{(x-5)^2}{400} \frac{(y+3)^2}{441} = 1 \Leftrightarrow (y+3)^2 = \frac{441}{400} (x-5)^2 441$ As $x \to \pm \infty$, the -441 is insignificant and can be ignored.

Taking the square root of both sides, we have the equations of the asymptotes!

$$(y+3) = \pm \frac{21}{20}(x-5) \Rightarrow \begin{cases} 21x - 20y = 165\\ 21x + 20y = 45 \end{cases}$$
$$y = 3 \Rightarrow$$
$$x = \frac{165 + 60}{21}, \frac{45 - 60}{21} = \frac{75}{7}, -\frac{5}{7} \Rightarrow PQ = \frac{75}{7} - \left(-\frac{5}{7}\right) = \frac{80}{7}$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2018 ROUND 2 ALGEBRA 1: FACTORING AND/OR EQTNS INVOLVING FACTORING

ANSWERS

A)	 	 	
B)	 	 	
C)			

A) Determine <u>all</u> numbers for which one more than the square of the number is the same as 7 more than 5 times the number.

B) The integer *N*has more than 8 positive factors, but N + 1 has only two. If N > 20, compute the minimum value of *N*.

C) For some <u>integer</u> value of a, (x-a) is a factor of $8x^3 - 40x^2 + 66x - 36$. Determine the complete factorization of $8x^3 - 40x^2 + 66x - 36$.

Round 2

A)
$$x^2 + 1 = 5x + 7 \Leftrightarrow x^2 - 5x - 6 = (x+1)(x-6) = 0 \Rightarrow x = -1, 6$$
.

B) We must find a pair of consecutive integers where the first is composite with the requisite number of factors and the second is prime. Consider only numbers immediately preceding a prime, e.g., 22, 28, 30, etc. 23: 22 = 2 · 11, only 4 factors - rejected 29: 28 = 2² · 7 ⇒ 1,2,4,7,14,28 31: 30 = 2 · 3 · 5 ⇒ 1,2,3,5,6,10,15,30 - rejected 37: 36 = 2² · 3² ⇒ 1,2,3,4,6,9,12,18,36 - BINGO! N = <u>36</u>. FYI: To find the number of factors of any integer (assuming the prime factorization of the number is known or easily determined), add 1 to each exponent and take the product of all of these sums, namely, (e₁+1) · (e₂+1) · (e₃+1) · ... · (e_k+1).

Thus, without enumerating, $360 = 2^3 \cdot 3^2 \cdot 5^1 \Longrightarrow (3+1)(2+1)(1+1) = 4 \cdot 3 \cdot 2 = 24$ factors.

C) Factoring out the constant factor, we have $8x^{3} - 40x^{2} + 66x - 36 = 2(4x^{3} - 20x^{2} + 33x - 18) = 2(x - a)(4x^{2} + ...)$ Using synthetic substitution confirms that for a = 2 the remainder is zero, and we have the linear and quadratic factors. $2(x - 2)(4x^{2} - 12x + 9) = 2(x - 2)(2x - 3)^{2}.$ $\frac{2}{4} - 20 - 33 - 18}{4} - 12 - 9 = 0$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2018 ROUND 3 TRIG: EQUATIONS WITH A REASONABLE NUMBER OF SOLUTIONS

ANSWERS

A)	
B)	
C)	

A) If $2-3\sin x = 4$ and $180^{\circ} < x < 270^{\circ}$, compute $\cos x$.

B) Compute the <u>secondsmallestpositive</u> value of *x* (in radians) for which

$$\sin(x) = \cos\left(2x - \frac{\pi}{6}\right)$$

C) Solve over
$$[0^\circ, 360^\circ)$$
. $\frac{\sin 2x}{1 - \cos x} = \tan x$

Round 3

A) $2-3\sin x = 4 \Rightarrow \sin x = -\frac{2}{3}$

Since $\sin^2 x + \cos^2 x = 1$, $\cos^2 x = 1 - \frac{4}{9} = \frac{5}{9} \Rightarrow \cos x = \pm \frac{\sqrt{5}}{3}$

But $180^\circ < x < 270^\circ$ puts x in quadrant 3, where $\cos x < 0$. Thus, $\cos x = -\frac{\sqrt{5}}{3}$ only.

B) Converting the cosine to sine,

$$\sin(x) = \cos\left(2x - \frac{\pi}{6}\right) \Leftrightarrow \sin(x) = \sin\left(\frac{\pi}{2} - \left(2x - \frac{\pi}{6}\right)\right) = \sin\left(\frac{2\pi}{3} - 2x\right)$$

Since the period of the sine function is 2π , we have

$$x = \frac{2\pi}{3} - 2x + 2n\pi \Leftrightarrow 3x = \frac{2\pi}{3} + 2n\pi \Leftrightarrow x = \frac{2\pi}{9} + \frac{2n\pi}{3} = \frac{2\pi(3n+1)}{9}$$

n = 0 produces the smallest positive solution. n = 1 produces the second smallest solution $\frac{8\pi}{9}$. Alternate solution:

The sine and cosine are cofunctions means that the values of the functions are equal if the arguments add to $\frac{\pi}{2}$ (i.e. are complementary)

By adding 2π to the sum we have the second largest positive answer.

$$x + \left(2x - \frac{\pi}{6}\right) = \frac{\pi}{2} + 2\pi = \frac{5\pi}{2} \Longrightarrow 3x = \frac{5\pi}{2} + \frac{\pi}{6} = \frac{8\pi}{3}$$
 and we have the same result.

C)
$$\frac{\sin 2x}{1 - \cos x} = \frac{2 \sin x \cos x}{1 - \cos x} = \frac{\sin x}{\cos x}$$

Provided $\cos x \neq 0, 1 \ (x \neq 0^\circ, 90^\circ, 270^\circ)$, we can cross multiply
 $2(\cos x)^2 = 1 - \cos x \Leftrightarrow 2\cos^2 x + \cos x - 1 = (2\cos x - 1)(\cos x + 1) = 0$
 $\Rightarrow \cos x = \frac{1}{2}, -1 \Rightarrow x = \underline{60^\circ, 300^\circ, 180^\circ}$ (All values will check!)

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2018 ROUND 4 ALGEBRA 2: QUADRATIC EQUATIONS

ANSWERS

A)	 	
B)	 	
C)		

- A) A curve is represented by an equation that indicates that x is inversely proportional to y. If (-3, 4) is a point on this curve, compute the coordinates of <u>all</u> points of intersection of this curve and the line y = -x.
- B) Given: *B* is a positive integer The quadratic equation $25x^2 - Bx + 1 = 0$ has two <u>distinct</u> rational roots. What is the only possible value of *B*?
- C) Solve for *x*: $2 \sqrt{5x+9} = \sqrt{8x+17}$

Round 4

A) x inversely proportional to $y \Rightarrow x = k \left(\frac{1}{y}\right) \Rightarrow xy = k$ (-3, 4) is a point on the curve $\Rightarrow k = -12$ $\begin{cases} xy = -12 \\ y = -x \end{cases} \Rightarrow x^2 = 12 \Rightarrow x = \pm 2\sqrt{3} \Rightarrow (-2\sqrt{3}, 2\sqrt{3}), (2\sqrt{3}, -2\sqrt{3}) \end{cases}$

B) The only possible factorizations are $(5x-1)^2$ and (25x-1)(x-1). Since the first does not yield two distinct roots, the second is the required factorization and $B = \underline{26}$.

Alternate (but more difficult) solution:

The roots are $\frac{B \pm \sqrt{B^2 - 100}}{2 \cdot 25}$. Two distinct rational roots require that the discriminant be a positive perfect square. That leaves out B = 10 which produces a discriminant of zero and exactly one root, x = 5. We can experiment by trial and error or..... analyze the situation as follows: Suppose $B^2 - 100 = k^2$, for some positive integer k. Transposing terms, we have the difference of perfect squares: $B^2 - k^2 = 100$. Factoring, $(B+k)(B-k) = 100 \cdot 1, 50 \cdot 2, 25 \cdot 4, 20 \cdot 5$ or $10 \cdot 10$

Equating factors and adding, we have $2B = \dots$ and the term on the right side must be even. The only possibility is $\begin{cases} B+k=50\\ B-k=2 \end{cases} \Rightarrow B = \underline{26}$.

C) Squaring both sides, $4 - 4\sqrt{5x+9} + 5x+9 = 8x+17 \Rightarrow -4\sqrt{5x+9} = 3x+4$ $\Rightarrow 16(5x+9) = 9x^2 + 24x + 16 \Rightarrow 9x^2 - 56x - 128 = (9x+16)(x-8) = 0$ $\Rightarrow x = -\frac{16}{9}$ 8 is extraneous, since $2 - \sqrt{49} \neq \sqrt{81}$ Here is the check for $x = -\frac{16}{9}$: $\left(2 - \sqrt{\frac{-80}{9} + \frac{81}{9}} = 2 - \sqrt{\frac{1}{9}} = \frac{5}{3}, \sqrt{\frac{-128}{9} + \frac{153}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3}\right)$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2018 ROUND 5 GEOMETRY: SIMILARITY OF POLYGONS

ANSWERS

Round 5

A)
$$42.5 = 5(8.5) \Rightarrow \operatorname{area}(\Delta PAQ) : \operatorname{area}(\Delta BAC) = 1 : 6 \Rightarrow \frac{AP}{AB} = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6}$$

B) If
$$AB = x$$
, then $BC = x - 2$, $BD = x + 2$.
 $x^{2} + (x - 2)^{2} = (x + 2)^{2} \Rightarrow x^{2} - 8x = 0 \Rightarrow x = 8 \Rightarrow (BC, AB, BD) = (6, 8, 10)$.
Since $\Delta DPW \sim \Delta DQV \sim \Delta DRU \sim \Delta DCB$, the corresponding
sides are in a ratio of $3: 4: 5$.
 $\Rightarrow DP = PQ = QR = \frac{4}{3}$.
Since $\Delta DCB \sim \Delta TSB$ and $TC = 2$, $BT = 4$.
 $\Rightarrow SB = \frac{3}{5} \cdot 4 = \frac{12}{5} = 2.4$.
 $\therefore RS = 10 - 3\left(\frac{4}{3}\right) - 2.4 = \underline{3.6}$.
C) $(12 + 35 + 37)n = 420 \Rightarrow 84n = 420 \Rightarrow n = 5 \Rightarrow BC = 60$.
 $\Delta RBQ \sim \Delta CSR \sim \Delta CBA \Rightarrow \frac{RQ}{CR} = \frac{BQ}{SR} \Rightarrow \frac{x}{60 - \frac{12}{37}x} = \frac{\frac{35}{37}x}{y}$.

Switching the means,
$$\frac{x}{\frac{35}{37}x} = \frac{60 - \frac{12}{37}x}{y}$$

Canceling and substituting $x = \frac{37}{2}, \frac{37}{35} = \frac{54}{y} \Rightarrow y = \frac{35(54)}{37} = \frac{2 \cdot 3^3 \cdot 5 \cdot 7}{37} \Rightarrow 2 + 3 + 5 + 7 = \underline{17}.$

Q

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2018 ROUND 6 ALGEBRA 1: ANYTHING

ANSWERS

A)	 	 	
B)	 	 	
C)			

- A) The Newton family saved *D* dollars for vacation expenses. Their plan was to save $\frac{1}{3}$ for food, $\frac{1}{5}$ for transportation costs, $\frac{2}{5}$ for hotels and the remaining \$400 for unforeseen expenses. Compute *D*.
- B) Let R(n) denote the value of *n* rounded to the nearest integer. Compute $R(\sqrt{179}) + R(\sqrt{311})$.

C) If
$$x \neq y$$
 and $\frac{x}{y} + x = \frac{y}{x} + y$, compute the numerical value of $\frac{1}{x} + \frac{1}{y}$.

Round 6

- A) Let *D* denote the total amount saved. Then: $\frac{1}{3}D + \frac{1}{5}D + \frac{2}{5}D + 400 = D \Longrightarrow 5D + 3D + 6D + 6000 = 15D$ $\Longrightarrow D = \underline{6000}.$
- B) Trap each radicand between consecutive perfect squares. $13^2 = 169 < 179 < 196 = 14^2$ Since 179 is closer to 169 than 196, $\sqrt{179}$ is closer to 13, i.e. $\sqrt{179} < 13.5 \Rightarrow R(\sqrt{179}) = 13$ $19^2 = 289 < 311 < 324 = 18^2$ Since 311 is closer to 324 than 289, $\sqrt{311}$ is closer to 18, i.e. $\sqrt{311} > 17.5 \Rightarrow R(\sqrt{311}) = 18$ Thus, $R(\sqrt{179}) + R(\sqrt{311}) = \underline{31}$.

C)
$$\frac{x}{y} + x = \frac{y}{x} + y \Leftrightarrow \frac{x}{y} - \frac{y}{x} + x - y = 0 \Leftrightarrow \frac{x^2 - y^2}{xy} + x - y = 0 \Leftrightarrow \frac{x^2 - y^2 + (x - y)xy}{xy} = 0$$
$$\Leftrightarrow \frac{(x - y)(x + y + xy)}{xy} = 0$$
Cross multiplying, $(x - y)(x + y + xy) = 0$.
Since $x \neq y$, $(x + y + xy) = 0 \Rightarrow x + y = -xy$.
Dividing by xy , $\frac{x + y}{xy} = \frac{1}{y} + \frac{1}{x} = -\frac{1}{1}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2018 ROUND 7 TEAM QUESTIONS

ANSWERS

A) The line 3x + 4y = k is tangent to $x^2 + 2y^2 = 3$. Compute <u>all</u> possible values of k.

B) Given:
$$(x, y) = \left(\frac{\sqrt{6} + \sqrt{2}}{4}, \frac{\sqrt{6} - \sqrt{2}}{4}\right)$$
 Compute $\left(\frac{x}{x - y}\right)^3 - \left(\frac{y}{x - y}\right)^3$.

C) Solve for x over $0^{\circ} \le x < 360^{\circ}$. $\cos^{6}x - \sin^{6}x = 0$

D) Given: $Ax^2 + Bx + C = 0$, where A, B, and C are integers, A > 0, A = 3B - 1 = 2 - 3C. The sum of the coefficients equals 200 times the sum of the roots times the product of the roots. Compute the ordered triple (A, B, C).

F) <u>How many</u> integer solutions are there to the equation $|x-7| + |x+5| \le 16$?

Team Round

A)
$$3x + 4y = k \Rightarrow y = \frac{k - 3x}{4}$$

Substituting, $x^2 + 2\left(\frac{k - 3x}{4}\right)^2 = 3 \Leftrightarrow 8x^2 + k^2 - 6kx + 9x^2 - 24 = 0$
 $\Leftrightarrow 17x^2 - 6kx + (k^2 - 24) = 0$. For any intersection point
between the line and the curve, the *x*-coordinate is unique!
Therefore, this quadratic equation will have equal roots, implying the
discriminant must be 0.
 $(-6k)^2 - 4(17)(k^2 - 24) = 0 \Rightarrow -8k^2 = -17 \cdot 24 \Rightarrow k = \pm\sqrt{51}$.

B)
$$\left(\frac{x}{x-y}\right)^3 - \left(\frac{y}{x-y}\right)^3 = \frac{x^3 - y^3}{(x-y)^3} = \frac{(x-y)(x^2 + xy + y^2)}{(x-y)^3} = \frac{x^2 + xy + y^2}{(x-y)^2} = \frac{(x^2 - 2xy + y^2) + 3xy}{(x-y)^2}$$

 $= \frac{(x-y)^2 + 3xy}{(x-y)^2} = 1 + \frac{3xy}{(x-y)^2}$
Since $3xy = 3\left(\frac{6-2}{16}\right) = \frac{3}{4}$ and $(x-y)^2 = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}$, we have $1 + \frac{3}{2} = \frac{5}{2}$.

-3 -

C) $\cos^{6} x - \sin^{6} x = 0 \Leftrightarrow \sin^{6} x = \cos^{6} x$ Provided $\cos x \neq 0$, we can divide both sides by $\cos^{6} x$, getting $\tan^{6} x = 1$. $\Rightarrow \tan x = \pm 1$ $\Rightarrow x = \underline{45}^{\circ}, \underline{135}^{\circ}, \underline{225}^{\circ}, \underline{315}^{\circ}$

None of these answers will be extraneous, since none will cause the $\cos x$ to equal zero.

Alternate solution:

$$\cos^{6}x - \sin^{6}x = (\cos^{3}x - \sin^{3}x)(\cos^{3}x + \sin^{3}x)$$

$$= (\cos x - \sin x)(\cos^{2}x + \cos x \sin x + \sin^{2}x)(\cos x + \sin x)(\cos^{2}x - \cos x \sin x + \sin^{2}x)$$

$$= (\cos x - \sin x)(1 + \cos x \sin x)(\cos x + \sin x)(1 - \cos x \sin x)$$

$$= (\cos^{2}x - \sin^{2}x)(1 - \cos^{2}x \sin^{2}x) = (\cos 2x)(1 - \cos^{2}x \sin^{2}x) = 0$$

$$\cos 2x = 0 \Rightarrow 2x = 90 + 180n \Rightarrow x = 45 + 90n \Rightarrow 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$$

$$(1 - \cos^{2}x \sin^{2}x) = 0 \Rightarrow \cos x \sin x = \pm 1 \Rightarrow \frac{\sin 2x}{2} = \pm 1 \Rightarrow \sin 2x = \pm 2 \text{ (which has no solutions)}$$

Team Round - continued

D) Given: $Ax^2 + Bx + C = 0$, where A, B, and C are integers, A > 0, A = 3B - 1 = 2 - 3C $A + B + C = A + \frac{A+1}{3} + \frac{2-A}{3} = \frac{3A+3}{3} = A+1$ So $A + 1 = 200 \cdot \left(-\frac{B}{A}\right) \left(\frac{C}{A}\right) = 200 \left(-\frac{A+1}{3A}\right) \left(\frac{2-A}{3A}\right)$ Dividing through by A + 1, $1 = 200 \left(\frac{1}{3A}\right) \left(\frac{A-2}{3A}\right) \Rightarrow 9A^2 = 200A - 400$ $\Rightarrow 9A^2 - 200A + 400 = 0$ Challenging to factor? Not Really! Since we were given that A was an integer, one factor must be of the form (A - ?).

$$\Leftrightarrow (A-20)(9A-20) = 0$$
. Therefore, $(A, B, C) = (20, 7, -6)$

 ΔDAR and ΔBAR are NOT similar, but they have the same

altitude from point A. Additionally, bases \overline{DR} and \overline{BR} are in a 11 : 4 ratio, so the areas of these triangles are also in a 11 : 4 ratio.

A similar argument establishes that the areas of $\triangle CBR$ and $\triangle BAR$ are also in a 11 : 4 ratio (which implies $\triangle DAR$ and $\triangle CBR$ although not congruent have the same area). Note that the diagram at the right maintains these area ratios.

$$\Delta BAR \sim \Delta PQR \Rightarrow \frac{PQ}{AB} = \frac{12}{10.5} = \frac{8}{7} \Rightarrow \frac{\operatorname{area}(\Delta BAR)}{\operatorname{area}(\Delta PQR)} = \frac{64}{49} \Rightarrow \operatorname{area}(\Delta PQR) = \frac{49}{4}k$$

Thus, the required ratio is $\frac{49/4}{16+121+2(44)} = \frac{49}{4(225)} = \frac{49}{900}$

FYI: We could have used the perimeter as follows:

Per = 12 + (6+12+15) + y + z = 72 \Rightarrow y + z = 27. Let h = AE = BF. Appealing to right triangles *ADE* and *BFC*, $h^2 = y^2 - 6^2 = z^2 - 15^2 \Rightarrow z^2 - y^2 = 189$. Substituting for z, $(27 - y)^2 + y^2 = 189 \Rightarrow 729 - 54y = 189 \Rightarrow y = 10, z = 17, h = 8$.

Thus,
$$225k = \frac{1}{2} \cdot 8 \cdot (12 + 33) = 180 \Rightarrow k = \frac{4}{5} \Rightarrow \frac{\frac{49}{4} \cdot \frac{4}{5}}{180} = \frac{49}{\underline{900}}.$$

Team Round - continued

F) Consider equivalent equations without absolute value. Case 1: $x \le -5$ $7 - x + (-x - 5) \le 16 \Leftrightarrow 2x \ge -14 \Leftrightarrow x \ge -7 \Rightarrow (-7, ... - 5)$: 3 solutions Case 2: -5 < x < 7 $7 - x + (x + 5) \le 16 \Leftrightarrow 12 \le 16$

Since this inequality is always true, all integers in the interval are solutions (-4...6): 11 solutions Case 3: $x \ge 7$

 $x-7+(x+5) \le 16 \Leftrightarrow 2x \le 18 \Leftrightarrow x \le 9 \Rightarrow (7...9)$: 3 solutions

Total number of solutions: <u>17</u>

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY2018 ANSWERS

Round 1 Analytic Geometry: Anything

A) (-2, 7, 5) B)Center: (2, -1) C) $\frac{80}{7}$

Radius: 5

Round 2 Algebra: Factoring

A)
$$-1, 6$$
 B)36 C) $2(x-2)(2x-3)^2$

Round 3 Trigonometry: Equations

A)
$$-\frac{\sqrt{5}}{3}$$
 B) $\frac{8\pi}{9}$ C) 60°, 180°, 300°

Round 4 Algebra 2: Quadratic Equations

A)
$$(-2\sqrt{3}, 2\sqrt{3}), (2\sqrt{3}, -2\sqrt{3})$$
 B) 26 C) $-\frac{16}{9}$

Round 5 Geometry: Similarity

A)
$$\frac{\sqrt{6}}{6}$$
 B)3.6 (or $\frac{18}{5}$) C) 17

Round 6 Algebra 1: Anything

Team Round

A)
$$\pm \sqrt{51}$$
 D) (20,7,-6)

- B) $\frac{5}{2}$ or 2.5 E) 49 : 900
- C) 45°, 135°, 225°, 315° F) 17