MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 ROUND 1 COMPLEX NUMBERS (No Trig)

ANSWERS

A) \qquad
B) (\qquad , \qquad)
C) (\qquad , \qquad)
A) Let $P=\sqrt{-125} \cdot \sqrt{-45}$ and $Q^{2}=P$. Compute Q.
B) Given: $z=1+i$

Compute the ordered pair (A, B), if $A+B i=\frac{1}{z}+(-z)+\bar{z}+z^{2}$.
C) Compute the ordered pair of positive integers (m, k) for which $\frac{1+i \sqrt{k}}{m}+\frac{m}{1+i \sqrt{k}}=1$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Round 1

A) $P=\sqrt{-125} \cdot \sqrt{-45}=\sqrt{125(-1)} \cdot \sqrt{45(-1)}=(5 \sqrt{5} \cdot i)(3 \sqrt{5} \cdot i)=15 \cdot 5 \cdot i^{2}=-75$

$$
Q^{2}=P=-\mathbf{7 5} \Rightarrow Q= \pm \mathbf{5} \boldsymbol{i} \sqrt{\mathbf{3}} .
$$

B) $\frac{1}{z}+(-z)+\bar{z}+z^{2}=\frac{1}{1+i}+(-1-i)+(1-i)+(1+i)^{2}=\frac{1-i}{2}-2 i+(1+2 i-1)=\frac{1-i}{2} \Rightarrow\left(\frac{\mathbf{1}}{\mathbf{2}},-\frac{\mathbf{1}}{\mathbf{2}}\right)$.
C) $\frac{1+i \sqrt{k}}{m}+\frac{m}{1+i \sqrt{k}}=\frac{(1+i \sqrt{k})^{2}+m^{2}}{m(1+i \sqrt{k})}=1 \Rightarrow 1-k+m^{2}+2 i \sqrt{k}=m+m i \sqrt{k}$

Equating the imaginary components, $m=2$.
Equating the real components and substituting for m, we have $1-k+4=2 \Rightarrow k=3$.
Thus, $(m, k)=\underline{(\mathbf{2}, \mathbf{3})}$.
Alternately, let $z=\frac{1+i \sqrt{k}}{m}$. Then: $z+\frac{1}{z}=1 \Rightarrow z^{2}-z+1=0 \Rightarrow z=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1 \pm i \sqrt{3}}{2}$.

$$
\frac{1+i \sqrt{k}}{m}=\frac{1+i \sqrt{3}}{2} \Rightarrow(m, k)=\underline{(\mathbf{2}, \mathbf{3})} .
$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017
 ROUND 2 ALGEBRA 1: ANYTHING

ANSWERS

A) \qquad
B) \qquad
C) (\qquad , \qquad)
A) Let $y=\frac{5}{9}(x-32)$. If both x and y are positive integers, compute the $\underline{\text { minimum }} \operatorname{sum} x+y$.
B) Given: $\left\{\begin{array}{l}A^{3}-B^{3}=296 \\ \frac{1}{B}+\frac{1}{30}=\frac{1}{5}\end{array}\right.$ for integers A and B.

Compute $A B^{2}-A^{2} B$.
C) At 55 mph , I will arrive at my destination in 18 minutes.

If I increase my speed by $k \mathrm{mph}$, I will arrive at my destination in 15 minutes.
Compute the ordered pair (k, d), where d denotes the distance to my destination (in miles).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Round 2

A) Making $x-32$ a positive multiple of 9 and as small as possible, we have $41-32=9$ which produces $y=5$ and $x+y=\underline{46}$.
B) $30 B \cdot\left(\frac{1}{B}+\frac{1}{30}=\frac{1}{5}\right) \Rightarrow 30+B=6 B \Rightarrow B=6$

$$
A^{3}-B^{3}=296 \Rightarrow A^{3}=296+216=512=2^{9} \Rightarrow A=2^{3}=8
$$

$$
A B^{2}-A^{2} B=A B(B-A)=8 \cdot 6 \cdot-2=\underline{\mathbf{- 9 6}} .
$$

C) $R \cdot T=D \Rightarrow d=55 \cdot \frac{18}{60}=55 \cdot \frac{3}{10}=\frac{33}{2}=16.5$
$R_{\text {new }} \cdot \frac{15}{60}=16.5 \Rightarrow R_{\text {new }}=66 \Rightarrow k=11$
Thus, $(k, d)=\underline{(11,16.5)}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2017
 ROUND 3 PLANE GEOMETRY: AREAS OF RECTILINEAR FIGURES

ANSWERS

A) \qquad
B) \qquad
C) \qquad : \qquad
A) In isosceles triangle $A B C, A B=A C=12$ and $B D=C E=4$. If area $(\triangle B A D)$: area $(\triangle A D E)=2: 3$, compute $B C$.

B) The diagram at the right shows the back of a 4 " $\times 9$ " envelope. If $A E=B E=5.1$, compute the area of trapezoid BCFE.

C) Consider regular hexagon $A B C D E F$ and rectangle $P Q R S$, as indicated in the diagram at the right, where $A B=2 \cdot A P$. Compute the ratio of the area of the hexagon to the area of the rectangle.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Round 3

A) $\operatorname{area}(\triangle A C E)=\frac{1}{2} \cdot h \cdot 4=2 h$.
$\operatorname{area}(\triangle A D E)=2\left(\frac{1}{2} \cdot h \cdot x\right)=h x$.
$\frac{2 h}{h x}=\frac{2}{3} \Rightarrow x=3 \Rightarrow B C=4+4+6=\underline{\mathbf{1 4}}$.
[The information that $A B=A C=12$ was irrelevant.]

B) Thinking Pythagorean Triple, $(\ldots, 4.5,5.1)=\frac{3}{10}\left(_, 15,17\right) \Rightarrow x=\frac{3}{10} \cdot 8=2.4 \Rightarrow E F=1.6$.
Thus, $|B C F E|=\frac{1}{2} 4.5(4+1.6)=4.5(2.8)=\underline{\mathbf{1 2 . 6}}$.

C) The area of the rectangle is $(4 x)(2 x \sqrt{3})=8 x^{2} \sqrt{3}$.

The area of the hexagon is $8 x^{2} \sqrt{3}-4\left(\frac{1}{2} x \cdot x \sqrt{3}\right)=6 x^{2} \sqrt{3}$. Thus, the required ratio is $6: 8=\underline{\mathbf{3}: \mathbf{4}}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2017 ROUND 4 ALG 1: FACTORING AND ITS APPLICATIONS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Given: $5 y(2 y-3 x)=3 x(3 x-2 y)$
y may be expressed in terms of x, namely $y=k x$, for a rational constant k. Compute all possible values of k.
B) Compute the sum of the distinct primes in the prime factorization of $6^{6}-2^{3} \cdot 3^{3}$
C) Solve for x.

$$
x^{4}=25 x^{2}-144
$$

Hint: Write a trinomial as the difference of perfect squares.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Round 4

A) Noticing that the binomials are opposites of each other makes the job simpler.
$5 y(2 y-3 x)=3 x(3 x-2 y) \Leftrightarrow 5 y(2 y-3 x)=-3 x(2 y-3 x) \Leftrightarrow 5 y(2 y-3 x)+3 x(2 y-3 x)=0$
Factoring out the common binomial factor,
$(2 y-3 x)(5 y+3 x)=0 \Rightarrow y=\frac{3}{2} x,-\frac{3}{5} x \Rightarrow k=\underline{\frac{\mathbf{3}}{\mathbf{2}}},-\frac{\mathbf{3}}{\mathbf{5}}$ (or $\left.\underline{\mathbf{1 . 5}}, \underline{\mathbf{- 0 . 6}}\right)$
Any order is allowed and the lead zero is not required.
B) $6^{6}-2^{3} \cdot 3^{3}=\left(6^{3}\right)^{2}-6^{3}=6^{3}\left(6^{3}-1\right)=6^{3}(215)=2^{3} \cdot 3^{3} \cdot 5 \cdot 43 \Rightarrow 2+3+5+43=\underline{\mathbf{5 3}}$
C)

$$
\begin{aligned}
x^{4} & =25 x^{2}-144 \Leftrightarrow x^{4}-25 x^{2}-144=\left(x^{4}-24 x^{2}+144\right)-x^{2}=\left(x^{2}-12\right)^{2}-x^{2} \\
& =\left(x^{2}-12+x\right)\left(x^{2}-12-x\right)=\left(x^{2}+x-12\right)\left(x^{2}-x-12\right)=(x+4)(x-3)(x+3)(x-4=0) \\
\Rightarrow & x= \pm \mathbf{3}, \pm \mathbf{4}
\end{aligned}
$$

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2017
 ROUND 5 TRIG: FUNCTIONS OF SPECIAL ANGLES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Given: $\left(\cot 135^{\circ}+\csc \left(\frac{-5 \pi}{6}\right)+\cot \left(\frac{11 \pi}{6}\right)\right)^{3}=a+b \sqrt{3}$, where a and b are rational numbers. Compute $b-a$.
B) Compute all values of x over the open interval $0<x<\pi$, for which the expression $\frac{1}{\cos ^{2} x-3 \sin ^{2} x}$ is undefined.
C) Compute all values of x (in radians) for which $2 \sin \left(4 x+\frac{5 \pi}{12}\right)-1=0$ and $0 \leq x<\pi$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Round 5

A) $\left(\cot 135^{\circ}+\csc \left(\frac{-5 \pi}{6}\right)+\cot \left(\frac{11 \pi}{6}\right)\right)^{3}$
$=(-1-2-\sqrt{3})^{3}=-(\sqrt{3}+3)^{3}=-\left[(\sqrt{3})^{3}+(3)(\sqrt{3})^{2}(3)+3(\sqrt{3})(9)+27\right]$
$=-[3 \sqrt{3}+27+27 \sqrt{3}+27]=-54-30 \sqrt{3} \Rightarrow b-a=\underline{\mathbf{2 4}}$.
or $-(\sqrt{3}+3)^{3}=-(\sqrt{3}+3)(\sqrt{3}+3)^{2}=-(\sqrt{3}+3)(6 \sqrt{3}+12)=-(18+36+30 \sqrt{3})$
$=-54-30 \sqrt{3}$ etc.
B) The expression $\frac{1}{\cos ^{2} x-3 \sin ^{2} x}$ will be undefined if and only if $\cos ^{2} x-3 \sin ^{2} x=0$. $\cos ^{2} x-3 \sin ^{2} x=0 \Leftrightarrow \cos ^{2} x=3 \sin ^{2} x=3\left(1-\cos ^{2} x\right) \Leftrightarrow 4 \cos ^{2} x=3$
$\Rightarrow \cos x= \pm \frac{\sqrt{3}}{2} \Rightarrow x=\frac{\frac{\pi}{\mathbf{6}}}{\underline{5}} \frac{\mathbf{5 \pi}}{\mathbf{6}}$ (over the stated interval).
C) $2 \sin \left(4 x+\frac{5 \pi}{12}\right)-1=0 \Rightarrow \sin \left(4 x+\frac{5 \pi}{12}\right)=\frac{1}{2} \Rightarrow 4 x+\frac{5 \pi}{12}=\left\{\begin{array}{l}\frac{\pi}{6} \\ \frac{5 \pi}{6}\end{array}+2 n \pi \Rightarrow x=\frac{1}{4} \cdot\left\{\begin{array}{l}\frac{\pi}{6}-\frac{5 \pi}{12} \\ \frac{5 \pi}{6}-\frac{5 \pi}{12}\end{array}+\frac{n \pi}{2}\right.\right.$
$x=\frac{1}{4} \cdot\left\{\begin{array}{l}-\frac{\pi}{4} \\ \frac{5 \pi}{12}\end{array}+\frac{n \pi}{2}=\left\{\begin{array}{l}-\frac{\pi}{16} \\ \frac{5 \pi}{48}\end{array}+\frac{n \pi}{2}=\left\{\begin{array}{l}\frac{8 n-1}{16} \pi \\ \frac{24 n+5}{48} \pi\end{array}\right.\right.\right.$ Letting $n=0,1,2$, we have
$\Rightarrow \frac{\mathbf{5 \pi}}{\mathbf{4 8}}, \frac{7 \pi}{16}, \frac{\mathbf{2 9 \pi}}{\mathbf{4 8}}, \frac{\mathbf{1 5 \pi}}{\mathbf{1 6}}$ This listing is in order of increasing magnitude.
Order does NOT matter.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 ROUND 6 PLANE GEOMETRY: ANGLES, TRIANGLES AND PARALLELS

ANSWERS

A) \qquad
B) (\qquad , \qquad)
C) \qquad
A) A base angle in an isosceles triangle with an obtuse vertex angle measures $(100-3 x)^{\circ}$. Compute the minimum integer value of x.
B) A convex quadrilateral $A B C D$ has interior angles in the ratio of $1: 2: 3: 4$.
Suppose A is the largest angle and the smallest angle is the opposite angle.
Diagonal $\overline{A C}$ divides $\angle B A D$ into two smaller angles whose measures are in a $5: 4$ ratio.
$\overline{A C}$ divides $\angle B C D$ into two smaller angles whose measures are in a simplified ratio of $m: n$, where

$m<n$. Compute the ordered pair (m, n).
C) Given: $l \| m, m \angle A B D=x^{2}-7$

$$
\begin{aligned}
& m \angle B D E=11 x+1 \\
& m \angle D E F=5 x+1
\end{aligned}
$$

Compute $m \angle A B C$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Round 6

A) $A=180-2(100-3 x)=6 x-20>90 \Rightarrow x>\frac{55}{3} \Rightarrow x_{\text {min }}=\left\lceil 18 \frac{1}{3}\right\rceil=\underline{\mathbf{1 9}}$.
B) $10 x=360 \Leftrightarrow x=36 \Rightarrow$ the largest angle measures 144° and the smallest 36°.
Either $(m \angle B, m \angle D)=(2 x, 3 x)=(72,108)$
or, possibly, vice versa.
Suppose $m \angle B A C=5 n$ and $m \angle C A D=4 n$. Then:
$9 n=144 \Rightarrow n=16 \Rightarrow(m \angle B A C, m \angle C A D)=(80,64)$
$\Rightarrow(m \angle B, m \angle D)=(72,108)$
$\Rightarrow(m \angle B C A, m \angle D C A)=(28,8)$

Thus, $(m, n)=(\mathbf{2 , 7})$.
C) Draw line n parallel to l and m.
$m \angle E D G=m \angle D E F=5 x+1$
$m \angle B D G=m \angle A B D=x^{2}-7$
$m \angle B D E=11 x+1=*+{ }^{\circ}=\left(x^{2}-7\right)+(5 x+1)$
$\Leftrightarrow x^{2}-6 x-7=(x+1)(x-7)=0 \Rightarrow x=\not \subset, 7$

$x=7 \Rightarrow m \angle A B D=7^{2}-7=42 \Rightarrow m \angle A B C=180-42=\underline{\mathbf{1 3 8}^{\circ}}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2017
 ROUND 7 TEAM QUESTIONS

ANSWERS

A) \qquad D) \qquad
B) \qquad E) \qquad
C) \qquad F) \qquad
A) If $\sqrt{-17-144 i}=x+y i$, where x and y are real numbers, compute all possible values of $\frac{x^{2}}{y}$.
B) The product of two numbers is 2 . The sum of the same numbers is 1 .

Compute the sum of the cubes of these numbers.
C) In $\triangle A B C, A C=4$ and $B C=6$.

If the area of $\triangle A B C$ is $3 \sqrt{15}$, compute both possible lengths of $\overline{A B}$.
D) How many factors of 4158000 are also factors of 122850 ?
E) Regular octagon $A_{1} A_{2} . . A_{8}$ is inscribed in an origin-centered circle. Its area is $50 \sqrt{2}$.

For at least one integer value of i, where $0<i<8, \overline{A_{i} A_{i+1}}$ is parallel to the x-axis. How many possible ordered pairs (x, y) are there for vertex A_{8}, where x and y are not both positive?
F) Given: $\stackrel{\text { sum }}{A E} \| B C, m \angle A D C=87^{\circ}$,

Ray $\underset{\sim}{A} \underset{\sim}{\sim}$ ~u bisects $\angle B A E$
Ray $C D$ bisects $\angle A C B$
Compute $m \angle A B G$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Team Round

A) Solution \#1: (Squaring both sides of the given equation)

We are looking for x - and y-values for which $\left\{\begin{array}{l}x^{2}-y^{2}=-17 \\ x y=-72\end{array}\right.$.
Concentrating on the second equation, we note $-8 \cdot 9=-72$ and $(-8)^{2}-9^{2}=-17 \Rightarrow \frac{x^{2}}{y}= \pm \frac{\mathbf{6 4}}{\mathbf{9}}$.
$\left[-9 \cdot 8=-72\right.$, but $\left.(-9)^{2}-8^{2} \neq-17\right]$
Solution \#2: Algebraic
Solving the system $\left\{\begin{array}{l}x^{2}-y^{2}=-17 \\ 2 x y=-144\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}-y^{2}=-17 \\ x y=-72 \Rightarrow y=\frac{-72}{x}\end{array}\right.\right.$, we substitute for y in the
first equation. $x^{2}-\left(-\frac{72}{x}\right)^{2}=-17 \Leftrightarrow x^{4}+17 x^{2}-72^{2}=0$. To get an $\underline{\text { odd }}$ coefficient for the middle term, the factors of 72^{2} must be of opposite parity, so we gather all the 3 's and all the 2 s , getting $72^{2}=9^{2} \cdot 8^{2}=81 \cdot 64$. The factorization is $\left(x^{2}+81\right)\left(x^{2}-64\right)=0 \Rightarrow x= \pm 8, y=\mathrm{m} 9 \Rightarrow$ the same results.

Solution \#3: Graphically
$?=145$, since $145^{2}=17^{2}+144^{2}$.
Proof: $145^{2}-144^{2}=(145+144)(145-144)=289(1)=17^{2}$

Now these equations are much easier to solve - just ADD.
$\left\{\begin{array}{l}x^{2}-y^{2}=-17 \\ x^{2}+y^{2}=145\end{array} \Rightarrow 2 x^{2}=128 \Rightarrow x= \pm 8, y= \pm 9 \Rightarrow \frac{x^{2}}{y}= \pm \frac{\mathbf{6 4}}{\mathbf{9}}\right.$.
B) Of course, we could find the two numbers. Unfortunately, they are complex numbers, i.e., numbers of the form $a+b i$, where $i=\sqrt{-1}$. We would then have to cube each of them, and add these results. Our plan is the avoid all this unpleasantness.
Let the numbers be x and y.
Consider the expansion of $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$.
Since $x+y=1$, we have (re-arranging terms and factoring) $1=x^{3}+y^{3}+3 x y(x+y)$.
$\Leftrightarrow 1=x^{3}+y^{3}+3 \cdot 2(1)$
$\Leftrightarrow x^{3}+y^{3}=\underline{-\mathbf{5}}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Team Round

C) Expecting to use Hero's formula, let $A B=2 x$. This will make computing the semi-perimeter s easy. Using Hero's formula, we have
$s=\frac{1}{2}(4+6+2 x)=5+x$.

$\sqrt{(5+x)(5-x)(1+x)(-1+x)}=3 \sqrt{15}$
$\Rightarrow\left(25-x^{2}\right)\left(-1+x^{2}\right)=135$
$\Rightarrow-25+25 x^{2}+x^{2}-x^{4}=135$
$\Rightarrow x^{4}-26 x^{2}+160=0 \Leftrightarrow\left(x^{2}-10\right)\left(x^{2}-16\right)=0 \Rightarrow x=4, \sqrt{10}$
$\Rightarrow A B=\underline{\mathbf{8}, \mathbf{2} \sqrt{10}}$.
Alternately, area of a triangle is given by $\frac{1}{2} a b \sin C$, where C is the included angle.
Thus, the area of $\triangle A B C$ is $\frac{1}{2} \cdot 4 \cdot 6 \sin C=3 \sqrt{15} \Rightarrow \sin C=\frac{\sqrt{15}}{4} \Rightarrow \cos C= \pm \frac{1}{4}$.
Using the Law of Cosines, if
$A B=c, c^{2}=4^{2}+6^{2}-2 \cdot 4 \cdot 6\left(\pm \frac{1}{4}\right)=52 \pm 12 \Rightarrow A B=\sqrt{64}, \sqrt{40}=\underline{\mathbf{8 , 2}} \sqrt{\mathbf{1 0}}$.
D) We must examine the prime factorization of each number.

$$
\begin{aligned}
& 4158000=4158\left(10^{3}\right)=9 \cdot 462\left(10^{3}\right)=9 \cdot 6 \cdot 77\left(10^{3}\right)=2^{4} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 11 \\
& 122850=10 \cdot 9 \cdot 1365=2 \cdot 3^{2} \cdot 5^{2} \cdot 273=2 \cdot 3^{3} \cdot 5^{2} \cdot 91=2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13
\end{aligned}
$$

Common factors are composed of prime factors of $2,3,5$, and 7 , i.e. of the form $2^{a} \cdot 3^{b} \cdot 5^{c} \cdot 7^{d}$, where each exponent must be an integer between 0 and the lowest exponent to which that prime occurred in the factorization of each number, inclusive.
Thus, $a: 0 \ldots 1, b: 0 \ldots 3, c: 0 \ldots 2, d: 0 \ldots 1$
Thus, there are $2 \cdot 4 \cdot 3 \cdot 2=\underline{\mathbf{4 8}}$ common factors.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2017 SOLUTION KEY

Team Round

E) As in the diagram at the right, at least one of the sides of the octagon is parallel to the x-axis, in this case
$i=1 \Rightarrow \overline{A_{1} A_{2}}$ or $i=5 \Rightarrow \overline{A_{5} A_{6}}$.
The octagon is comprised of 8 isosceles triangles with vertex angles of $\frac{360}{8}=45^{\circ}$ and legs equal to a radius of the circumscribed circle. Using $\frac{1}{2} a b \sin \theta$ to calculate the area of a triangle, where θ denotes the included angle, we have $8\left(\frac{1}{2} R^{2} \sin 45^{\circ}\right)=2 R^{2} \sqrt{2}=50 \sqrt{2} \Rightarrow R=5$ and the
 coordinates of the vertices must satisfy $x^{2}+y^{2}=25$.
In quadrant I, the only candidates are $(3,4)$ and
$(4,3)$. These are not allowed; however, there are two additional candidates in each of the other quadrants
by virtue of symmetry with respect to the x-axis $(x,-y)$, the y-axis $(-x, y)$ and the origin $(-x,-y)$.
Thus, there are $\underline{\mathbf{6}}$ possibilities.
F) Let $m \angle F A D=x^{\circ}$. Then:
$m \angle D A E=\frac{1}{2}(180-x)=90-\frac{x}{2}$
$m \angle B C A=m \angle C A E=m \angle D A C$
$\Rightarrow m \angle D A C=\frac{1}{2}\left(90-\frac{x}{2}\right)=45-\frac{x}{4}$.
Thus, in $\triangle A D C,\left(90-\frac{x}{2}\right)+\left(45-\frac{x}{4}\right)+87=180$

$\Rightarrow 42=\frac{3}{4} x \Rightarrow x=56 \Rightarrow m \angle A B G=\underline{\mathbf{1 2 4}}$.

Round 1 Algebra 2: Complex Numbers (No Trig)
A) $\pm 5 i \sqrt{3}$
B) $\left(\frac{1}{2},-\frac{1}{2}\right)$
C) $(2,3)$

Round 2 Algebra 1: Anything
A) 46
B) -96
C) $(11,16.5)$

Round 3 Plane Geometry: Area of Rectilinear Figures
A) 14
B) 12.6
C) $3: 4$

Round 4 Algebra: Factoring and its Applications
A) $-\frac{3}{5}, \frac{3}{2}$ (or $-0.6,1.5$)
B) 53
C) $\pm 3, \pm 4$

Round 5 Trig: Functions of Special Angles
A) 24
B) $\frac{\pi}{6}, \frac{5 \pi}{6}$
C) $\frac{5 \pi}{48}, \frac{7 \pi}{16}, \frac{29 \pi}{48}, \frac{15 \pi}{16}$

Round 6 Plane Geometry: Angles, Triangles and Parallels
A) 19
B) $(2,7)$
C) 138°

Degree symbol not required.
Team Round
A) $\pm \frac{64}{9}$
D) 48
(both answers required)
B) -5
E) 6
C) $8,2 \sqrt{10}$
F) 124

