MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2016

ROUND 1 TRIG: RIGHT ANGLE PROBLEMS, LAWS OF SINES AND COSINES

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) The short leg in right triangle $A B C$ has length 16. The hypotenuse is 2 units longer than the long leg. Compute the area of $\triangle A B C$.
B) In $\triangle A B C, A B=12, B C=15$, and $A C=8$. Compute $\frac{\sin B+\sin C}{\sin A}$.
C) In right triangle $A B C, m \angle C=90^{\circ}$, median $A N=2 \sqrt{2}$, and median $B P=3 \sqrt{3}$. Compute the length of median $\overline{C M}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Round 1

A) Let the hypotenuse and long leg have lengths $(x+2)$ and x.

Then: $16^{2}+x^{2}=(x+2)^{2} \Leftrightarrow 256+x^{2}=x^{2}+4 x+4 \Rightarrow 64=x+1 \Rightarrow x=63$
Thus, the area is $\frac{1}{2} \cdot 16 \cdot 63=8 \cdot 63=\underline{\mathbf{5 0 4}}$.
B) According to the Law of Sines,
$\frac{\sin A}{15}=\frac{\sin B}{8}=\frac{\sin C}{12}=n \Rightarrow\left\{\begin{array}{l}\sin A=15 n \\ \sin B=8 n \\ \sin C=12 n\end{array}\right.$
Therefore, $\frac{\sin B+\sin C}{\sin A}=\frac{8 n+12 n}{15 n}=\frac{20}{15}=\underline{\frac{\mathbf{4}}{\mathbf{3}}}$.

C) In right triangles $B C P$ and $A C N$,

$$
\left\{\begin{array}{l}
a^{2}+\left(\frac{b}{2}\right)^{2}=8 \Rightarrow 4 a^{2}+b^{2}=32 \\
b^{2}+\left(\frac{a}{2}\right)^{2}=27 \Rightarrow a^{2}+4 b^{2}=108
\end{array} \Rightarrow a^{2}+b^{2}=\frac{140}{5}=28\right.
$$

But $a^{2}+b^{2}=c^{2}=28 \Rightarrow c=2 \sqrt{7} \Rightarrow C M=\underline{\sqrt{7}}$.

FYI:
The midpoint of the hypotenuse is the center of the circumscribed circle, i.e. the circle which passes through the 3 vertices of the right triangle $A B C$.
The medians in ANY triangle are concurrent, i.e. pass through a common point.
The point of concurrency divides each median into segments whose lengths are in a $2: 1$ ratio.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2016
 ROUND 2 ARITHMETIC/NUMBER THEORY

ANSWERS

A) (\qquad , \qquad)
B) \qquad
C) \qquad
A) The value of n ! gets large very quickly, but the sum of the digits of n ! increases slowly.

Let $P=$ minimum value of n for which Q, the sum of the digits of $n!$, exceeds 10. Compute the ordered pair (P, Q).

Note: $n!$ (read n factorial) is defined as the product $n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1$.
B) Find the remainder when 7^{355} is divided by 4 .
C) A two-digit positive integer N leaves a remainder of 1 when divided by 5 . If the digits are reversed, this new integer leaves a remainder of 3 when divided by 5 . What is the remainder when the sum of all integers N satisfying these conditions is divided by 9 ?

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 －DECEMBER 2016 SOLUTION KEY

Round 2

A）Simply build a table of $n!$－values．

n	$n!$	Digitsum	n	$n!$	Digitsum
2	2	2	7	5040	9
3	6	6	8	40320	9
4	24	6	$\underline{\mathbf{9}}$	362880	$\underline{\mathbf{2 7}}$
5	120	3	10		
6	720	9			

Thus，$(P, Q)=\underline{(9,27)}$
B）Looking for a pattern： $7^{1}=4 \cdot 1+3,7^{2}=49=4 \cdot 12+1,7^{3}=343=4 \cdot 85+3$ ，

$$
7^{4}=2401=4 \cdot 600+1,7^{5}=16807=4 \cdot 4201+3, \ldots
$$

This suggests that the remainders alternate between 3 and 1 and that the required remainder is $\underline{\mathbf{3}}$ ，since the exponent 355 is odd．
This can be summarized as $7^{\text {odd }} \equiv 3(\bmod 4)$ and $7^{\text {even }} \equiv 1(\bmod 4)$ ，where $(\bmod n)$ denotes the remainder upon division by n and \equiv is read＂is congruent to＂．
Does this alternating pattern really continue？Removing any doubt ．．．．．
Consider that $7^{n}=(4+3)^{n}$ ．Each term in the expansion will contain a factor of 4 ，except the last term 3^{n} ，so we must examine powers of 3 to determine the remainder．
$3^{n}=(2+1)^{n}$ and the last terms in the expansion will be $2 n+1$ ．If n is even，then this is 1
more than a multiple of $4(n=2 k$（i．e．，even）$\Rightarrow 2 n+1=2(2 k)+1=4 k+1)$ ；if n is odd，this is 3 more than a multiple of $4(n=2 k+1$（i．e．，odd）$\Rightarrow 2 n+1=2(2 k+1)+1=4 k+3)$ ． Thus，the alternating pattern really does continue！

C）If N and N＇denote the two－digit numbers and a and b denote the digits，then
$\left\{\begin{array}{l}N=10 a+b=5 k+1 \\ N^{\prime}=10 b+a=5 j+3\end{array}\right.$ ．Adding，$N+N^{\prime}=11(a+b)=5(j+k)+4$ ．
If $j+k$ is even，then $5(j+k)$ is a multiple of 10 and $a+b=4$ or 14 ．
If $j+k$ is odd，$a+b=9$ ．［19 is rejected，since the maximum digit sum is $9+9=18$ ．］
$a+b=4 \Rightarrow N=$ 圾，222， 31

$a+b=14 \Rightarrow N=$ 仅，86，収
The sum of all the numbers satisfying the specified conditions is 234 which leaves a remainder of $\underline{\mathbf{0}}$ when divided by 9 ．

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2016 ROUND 3 COORDINATE GEOMETRY OF LINES AND CIRCLES

ANSWERS

A) \qquad
B) $($ \qquad ,
C) \qquad
A) The equation of circle C_{1} is $(x-6)^{2}+(y-4)^{2}=5.0625$.

Two sides of rectangle $O P Q R$ are tangent to circle C_{1} at points S and T. $\overleftrightarrow{H N} \| \overrightarrow{O R}$ and intersects circle C_{1} at point M.
Compute the perimeter of rectangle HORN.
Recall: $\frac{1}{8}=0.125$.

B) Line \mathcal{L} passes through points $A(-4,1)$ and $B(17,8)$. The line perpendicular to \mathcal{L} has x intercept at $C(3,0)$ and intersects \mathcal{L} at $D(p, q)$. Compute the ordered pair (p, q).
C) Given: Circle $C_{1}: x^{2}+y^{2}=676$

How many unit circles, i.e. with radius 1 , are internally tangent to C_{1} and have a center at a lattice point?

Note: Two circles are internally tangent if they share a common tangent line \mathscr{J} and the centers of the circles are on the same side of the tangent line \mathscr{J}.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Round 3

A) Since the center of C_{1} is at $(6,4)$ and $r^{2}=5 \frac{1}{16}=\frac{81}{16}$, we have the radius is $\frac{9}{4}=2.25$ $Q(8.25,6.25)$ and $M(6,1.75)$.
Thus, rectangle $H O R N$ is 1.75×8.25, resulting in a perimeter of $2(1.75+8.25)=\underline{\mathbf{2 0}}$.
B) $m_{\mathcal{L}}=\frac{8-1}{17+4}=\frac{1}{3}$.

The equation of \boldsymbol{L} is $x-3 y=-7$.
The equation of the perpendicular is $(y-0)=-3(x-3)$
$\Rightarrow 3 x+y=9^{* * *}$.
Solving simultaneously,
$3 x+y=9$
$x-3 y=-7$
$4 x-2 y=2$
$2 x-y=1^{* * *}$

Adding,
$5 x=10 \Rightarrow x=2, y=3$
Thus, $(p, q)=\underline{(2,3)}$.
C) The given circle is origin-centered with radius 26. Thus, we are looking at two concentric origin-centered circles of radii 25 and 26. The equations of the required unit circles must be of the form $(x-h)^{2}+(y-k)^{2}=1$, where $h^{2}+k^{2}=25^{2}$.
This suggests two possible Pythagorean Triples: 7-24-25 and 5(3-4-5) $=(15-20-25)$
For each triple there are 8 possibilities: two in each of the 4 quadrants, as the coordinates of the center are swapped and the signs are changed from (+,+) to (-,+), (-,-) and (+,-).
We also must consider $(\pm 25,0)$ and $(0, \pm 25)$.
Therefore, the center can be located at $\underline{\mathbf{2 0}}$ different lattice points.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 ROUND 4 ALG 2: LOG \& EXPONENTIAL FUNCTIONS

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Compute the value(s) of x that satisfy the equation $\log _{2} x+\log _{2} \frac{1}{4}=\frac{3}{2} \log _{2} 25$.
B) If $\log _{3}\left(\log _{2}\left(\log _{2} x\right)\right)=1$, compute $\left(\log _{4} x\right)^{\frac{1}{2}} \cdot \log _{2} x$.
C) Determine the domain of the real-valued function defined by $y=\log _{10}\left(\frac{x^{3}+1}{x^{3}-x}\right)$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Round 4

A) $\log _{2} x+\log _{2} \frac{1}{4}=\frac{3}{2} \log _{2} 25 \Leftrightarrow \log _{2} \frac{x}{4}=\log _{2}\left(25^{\frac{3}{2}}\right)=\log _{2} 125 \Rightarrow \frac{x}{4}=125 \Rightarrow x=\underline{\mathbf{5 0 0}}$.
B) $\log _{3}\left(\log _{2}\left(\log _{2} x\right)\right)=1 \Rightarrow \log _{2}\left(\log _{2} x\right)=3^{1} \Rightarrow \log _{2} x=2^{3}=8 \Rightarrow x=256$
$\left(\log _{4} 256\right)^{\frac{1}{2}} \cdot \log _{2} 256=\sqrt{4} \cdot 8=\underline{\mathbf{1 6}}$.
C) $x^{3}-x=x(x+1)(x-1) \neq 0 \Rightarrow x \neq 0, \pm 1$
$\frac{x^{3}+1}{x^{3}-x}=\frac{(x)\left(x^{2}-x+1\right)}{x\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}}$
As a real-valued function, $y=\log _{10}\left(\frac{x^{3}+1}{x^{3}-x}\right)$ must have a positive argument.
$\Rightarrow \frac{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}}{x(x-1)}>0$. Since the numerator is always positive, the denominator determines the sign of the quotient. For $x<0$ or $x>1$, both factors in the denominator have the same parity (i.e. both are positive or both are negative) and the quotient will be positive.

Thus, the domain (which must exclude -1) is $\boldsymbol{x}<-\mathbf{1},-\mathbf{1}<\boldsymbol{x}<\mathbf{0}, \boldsymbol{x}>\mathbf{1}$.
Interval notation is also acceptable:
$(-\infty,-1),(-1,0),(1, \infty)$
Commas may be replaced by "or"s. Also accept $x<0, x>1(x \neq-1)$ or, since "and"s are evaluated before "or"s, $x<0$ and $(x \neq-1)$ or $x>1$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2016
 ROUND 5 ALG 1: RATIO, PROPORTION OR VARIATION

ANSWERS

A) \qquad
B) \qquad
C) \qquad
A) Suppose the amount of light reflected by a set of mirrors is directly proportional to the surface area of the mirrors. 50 lumens of light are reflected off a mirror whose dimensions are 3 inches by 5 inches. How many lumens of light are reflected off two mirrors placed side-by-side made of the same material given that the first is 4 inches by 6 inches and the second is 5 inches by 9 inches?

B) Given: $\left\{\begin{array}{l}\frac{A}{B}=\frac{7}{9} \\ \frac{C}{D}=\frac{5}{3}\end{array}\right.$ If $B=4 D$, compute $\frac{A+B}{C+D}$.
C) As a 3-point shooter in basketball, I have currently hit on 60% of my attempts. If 8 of my hits had been misses, I would have only been a $50 \% 3$-point shooter. Suppose I hit on my next $k 3$-point shots. What is the minimum value of k for which I hit at least 70% of my 3 point attempts?

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Round 5

A) $\frac{50}{3 \cdot 5}=\frac{10}{3}$ lumens per in ${ }^{2} \cdot \frac{10}{3}(24+45)=80+150=\underline{\mathbf{2 3 0}}$ lumens.
B) $\frac{A+B}{C+D}=\frac{\frac{7}{9} B+B}{\frac{5}{3} D+D}=\frac{\frac{16}{9} B}{\frac{8}{3} D}=\frac{2 B}{3 D}=\frac{2(4 D)}{3 D}=\frac{\mathbf{8}}{\mathbf{3}}$.
C) Assume currently I have hit x 3-pointers in y attempts. Then:
$\left\{\begin{array}{l}\frac{x}{y}=0.6=\frac{3}{5} \\ \frac{x-8}{y}=\frac{1}{2}\end{array} \Leftrightarrow\left\{\begin{array}{l}5 x=3 y \\ y=2 x-16\end{array} \Leftrightarrow 5 x=3(2 x-16) \Rightarrow x=48, y=80\right.\right.$
$\frac{48+k}{80+k} \geq 0.70=\frac{7}{10} \Leftrightarrow 480+10 k \geq 560+7 k \Rightarrow 3 k \geq 80 \Rightarrow k_{\min }=\underline{\mathbf{2 7}}$.
Check: $k=26 \Rightarrow \frac{74}{106} \approx 0.6981, k=27 \Rightarrow \frac{75}{107} \approx 0.7009$

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2016 ROUND 6 PLANE GEOMETRY: POLYGONS (no areas)

ANSWERS
A) \qquad
B) $\begin{array}{lll}\mathrm{A} & \mathrm{O} & \mathrm{R}\end{array}$
C) (\qquad , \qquad
A) In a polygon with n sides, the ratio of the sum of the measures of the exterior angles (one at each vertex) to the sum of the measure of the interior angles is $\frac{1}{8}$. How many diagonals does this polygon have, originating from any single vertex?
B) In baseball, home plate according to the MLB rulebook, has 3 right angles and dimensions shown at the right. Rules may be rules, but, as students of mathematics, we realize that this shape cannot exist. $m \angle E T A$ may be close to 90°, but $\angle E T A$ is not a right angle. Is interior $\angle E T A$ Acute, Obtuse or Reflexive?
Circle the correct letter in the answer blank above.

C) The diagonals of quadrilateral $A B C D$ (segments $\overline{A D}$ and $\overline{B C}$) do not intersect. This is always the case for a concave quadrilateral. Note: Points A, B, C, D, and E all lie in the same plane.
Assume E lies on $\overline{B C}$.
If $\overline{A D E} \perp \overline{B C}, A B=B C=25, A C=30, B D=B E+3$, $A E=3(B E+1)$, compute the ordered pair ($D C, d$), where d denotes the absolute value of the difference between the lengths of the diagonals.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Round 6

A) $\frac{360}{180(n-2)}=\frac{2}{n-2}=\frac{1}{8} \Rightarrow n-2=16 \Rightarrow n=18$.

Diagonals in a polygon from any single vertex can be drawn to any other vertex, except the two adjacent vertices, eliminating 3 vertices. Thus, 18-3=15.
B) Reflexive refers to an angle whose measure is greater than 180° and less than 360°. The exterior angle at T is a reflexive angle.
The interior angle must be either acute or obtuse.
If $\angle E T A$ were a right, then angle $E A^{2}=(12 \sqrt{2})^{2}=144 \cdot 2=288$.
However, $E A^{2}=17^{2}=289$. Since the square of the actual length is slightly longer, $\angle E T A$ must be obtuse.

C) Either by invoking the Pythagorean theorem,
$x^{2}+9(x+1)^{2}=625 \Rightarrow 10 x^{2}+18 x-616=0 \Rightarrow 5 x^{2}+9 x-308=(5 x+44)(x-7)=0 \Rightarrow x=7$,
or, recognizing special right triangles (7-24-25, 18-24-30), we have $C E=18, A E=24$
$\Rightarrow B D=10 \Rightarrow D E=\sqrt{51} \Rightarrow D C^{2}=51+18^{2}=375 \Rightarrow D C=5 \sqrt{15}$
$d=25-(24-\sqrt{51})=1+\sqrt{51}$
Thus, the required ordered pair is $(5 \sqrt{15}, 1+\sqrt{51})$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 3 - DECEMBER 2016
 ROUND 7 TEAM QUESTIONS
 ANSWERS

A) (\qquad , ,
D) \qquad
B) \qquad E) (\qquad , \quad)
C) (\qquad , \qquad) F) (\qquad , \qquad ,)
A) The perimeter of the rectangle $A B C D$, where $B C=1$, and the diagonals intersect at a 45° angle may be expressed in the form $s+t \sqrt{r}$, where \sqrt{r} is a simplified radical. Compute the ordered triple (s, t, r).

B) Find all integer ordered pairs (n, k) which satisfy the following equation:

$$
n^{3}-3 n^{2}+3 n=k^{3}+3 k^{2}+3 k-17
$$

C) A regular octagon is placed on a coordinate system as shown in the diagram. If $A(-2,-1)$ and $B(4,-1)$, compute the coordinates of the x-intercept of $\overline{A E}$.
D) Given: $\log 250=N$

Give a simplified expression for $\log _{5} 250$ in terms of N.

E) The golden rectangle is a rectangle with dimensions $L_{g} \mathrm{x} W_{g}$, where $L_{g}>W_{g}$ which satisfies the proportion $\frac{L_{g}}{W_{g}}=\frac{L_{g}+W_{g}}{L_{g}}$. Define a silver rectangle to be a rectangle with dimensions $L_{s} \times W_{s}$, where $L_{s}>W_{s}$ and diagonal D_{s} which satisfies the proportion $\frac{L_{s}}{W_{s}}=\frac{D_{s}}{L_{s}}$. The ratio $\frac{L_{g}}{W_{g}}: \frac{L_{s}}{W_{s}}=\frac{\sqrt{B}}{A}$, where $A>1$ is an integer and $A \cdot B$ is a minimum. Compute the ordered pair (A, B).
F) Given square $A B C D$ with side of length 4.

Arcs are drawn from each vertex and the points of intersection form square $P Q R S$ as shown. In simplified radical form, the perimeter of $P Q R S$ is $a(\sqrt{b}-\sqrt{c})$, where a, b, and c are positive integers.
Compute the ordered triple (a, b, c).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Team Round

A) Solution \#1:

Let $P B=P C=x$. Using the Law of Cosines on $\triangle B P C$, $x^{2}+x^{2}-2 x^{2} \cos 45^{\circ}=1 \Rightarrow(2-\sqrt{2}) x^{2}=1$
$\Rightarrow x^{2}=\frac{1}{2-\sqrt{2}}=\frac{2+\sqrt{2}}{2}$

$\Rightarrow B D=2 x=2 \sqrt{\frac{2+\sqrt{2}}{2}}$
$D C^{2}=B D^{2}-1=4\left(\frac{2+\sqrt{2}}{2}\right)-1=3+2 \sqrt{2}=(1+\sqrt{2})^{2}$
\Rightarrow Perimeter $=2(1+\sqrt{2})+2=4+2 \sqrt{2} \Rightarrow(s, t, r)=\underline{(4,2,2)}$.
Solution \#2:
Drop a perpendicular from B to $\overline{A C}$
$E C=x \sqrt{2}-x=x(\sqrt{2}-1)$
In $\triangle B E C$,
$x^{2}+(\sqrt{2}-1)^{2} x^{2}=1^{2} \Rightarrow x^{2}(1+2+1-2 \sqrt{2})=1$

$\Rightarrow x^{2}=\frac{1}{4-2 \sqrt{2}}=\frac{4+2 \sqrt{2}}{8}=\frac{2+\sqrt{2}}{4}$
$B D=2 x \sqrt{2} \Rightarrow B D^{2}=8 x^{2}=8\left(\frac{2+\sqrt{2}}{4}\right)=4+2 \sqrt{2}$
But $D C^{2}=B D^{2}-1=4+2 \sqrt{2}-1=3+2 \sqrt{2}$ and the same result follows.
Note that the perimeter is numerically equal to $B D^{2}$!!
Solution \#3
Note that $m \angle B D C=\frac{1}{2} m \angle B P C$. So, using $\tan \frac{\theta}{2}=\frac{\sin \theta}{1+\cos \theta}$, we have $\tan (\angle B D C)=\frac{\sin 45^{\circ}}{1+\cos 45^{\circ}}=\frac{\sqrt{2} / 2}{1+\sqrt{2} / 2}=\frac{1}{1+\sqrt{2}} \Rightarrow D C=1+\sqrt{2}$ and the same result follows.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Team Round - continued

B) $n^{3}-3 n^{2}+3 n=k^{3}+3 k^{2}+3 k-17 \Leftrightarrow\left(n^{3}-3 n^{2}+3 n-1\right)=\left(k^{3}+3 k^{2}+3 k+1\right)-19$
$\Leftrightarrow(n-1)^{3}-(k+1)^{3}=-19$
As the difference of perfect squares, the left hand side of this equation factors as
$(n-k-2)\left[(n-1)^{2}+(n-1)(k+1)+(k+1)^{2}\right]=-19$
Since n and k are integers and 19 is prime, we have two possibilities,
(1) $\left\{\begin{array}{l}n-k-2=-19 \\ (n-1)^{2}+(k+1)^{2}+(n-1)(k+1)=1\end{array}\right.$ or (2) $\left\{\begin{array}{l}n-k-2=-1 \\ (n-1)^{2}+(k+1)^{2}+(n-1)(k+1)=19\end{array}\right.$

Notice we are tacitly assuming that the second equation must be equal to a positive number. The reasoning will be given at the end.
(1) $\Rightarrow n=-17+k$

Substituting, we have $(k-18)^{2}+(k+1)^{2}+(k-18)(k+1)=1 \Leftrightarrow 3 k^{2}-51 k+18(17)+1=0$ which has no rational solutions, since the discriminant is negative (-1083).
(2) $\Rightarrow n=k+1$

Substituting, we have
$k^{2}+(k+1)^{2}+k(k+1)=19 \Leftrightarrow 3 k^{2}+3 k-18=3\left(k^{2}+k-6\right)=3(k-2)(k+3)=0 \Rightarrow k=2,-3$
$\Rightarrow(n, k)=(3,2)$ or $(-2,-3)$.
Clearly, an expression of the form $A^{2}+A B+B^{2}$ is positive if A and B are either both positive or both negative, but what about when they have opposite signs?
Completing the square, $A^{2}+A B+B^{2}=A^{2}+2 A B+B^{2}-A B=(A+B)^{2}-A B$.
If A and B have opposite signs, then we are subtracting a negative and again the expression is positive.
C) Solution \#1: $\triangle A Q P \sim \triangle A B E$

$$
\begin{aligned}
& \frac{A Q}{A B}=\frac{P Q}{E B} \Leftrightarrow \frac{x+2}{6}=\frac{1}{6+2(3 \sqrt{2})} \\
& \Rightarrow x+2=\frac{6}{6+6 \sqrt{2}}=\frac{1}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}}=\sqrt{2}-1 \\
& \Rightarrow x=\sqrt{2}-3
\end{aligned}
$$

Thus, the x-intercept of $\overline{A E}$ is at $(-3+\sqrt{2,0})$.

Solution \#2:

The equation of $\overrightarrow{A E}$ is

$(y+1)=\frac{6+6 \sqrt{2}}{6}(x+2)=(\sqrt{2}+1)(x+2)$. Substituting $y=0$ into $(y+1)=(\sqrt{2}+1)(x+2)$ gives the same result.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Team Round - continued

D) Let A denote $\log 2$.
$\log _{5} 250=\frac{\log 250}{\log 5}=\frac{N}{\log \left(\frac{10}{2}\right)}=\frac{N}{\log 10-\log 2}=\frac{N}{\underline{\mathbf{1 - A}}}$
But $N=\log 250=\log \left(2 \cdot 5^{3}\right)=\log 2+3 \log \left(\frac{10}{2}\right)=3-2 \log 2=3-2 A \Rightarrow A=\frac{3-N}{2}$
Substituting, $\log _{5} 250=\frac{N}{1-A}=\frac{N}{1-\frac{3-N}{2}}=\frac{N}{\frac{N-1}{2}}=\frac{\mathbf{2 N}}{N-1}$.
E) $\frac{L_{g}}{W_{g}}=\frac{L_{g}+W_{g}}{L_{g}} \Rightarrow L_{g}{ }^{2}-L_{g} W_{g}-W_{g}{ }^{2}=0$. Dividing by $W_{g}{ }^{2},\left(\frac{L_{g}}{W_{g}}\right)^{2}-\frac{L_{g}}{W_{g}}-1=0$.

Applying the Q.F., $\frac{L_{g}}{W_{g}}=\frac{1+\sqrt{5}}{2}=n$.
$\frac{L_{s}}{W_{s}}=\frac{D_{s}}{L_{s}} \Rightarrow L_{s}{ }^{2}=W_{s} \sqrt{L_{s}{ }^{2}+W_{s}^{2}} \Rightarrow L_{s}{ }^{4}=W_{s}{ }^{2}\left(L_{s}{ }^{2}+W_{s}{ }^{2}\right)$
Multiplying out, dividing by W_{s}^{4} and transposing terms $\Rightarrow\left(\frac{L_{s}}{W_{s}}\right)^{4}-\left(\frac{L_{s}}{W_{s}}\right)^{2}-1=0$. Applying the Q.F. again, we have $\left(\frac{L_{s}}{W_{s}}\right)^{2}=\frac{1+\sqrt{5}}{2}=n$. Therefore, the required ratio is $\frac{n}{\sqrt{n}}=\sqrt{n}=\sqrt{\frac{1+\sqrt{5}}{2} \cdot \frac{2}{2}}=\sqrt{\frac{2+2 \sqrt{5}}{4}}=\frac{\sqrt{2+2 \sqrt{5}}}{2}$
Multipliers other than $\frac{2}{2}$ were possible. $\frac{8}{8} \Rightarrow \frac{\sqrt{8+8 \sqrt{5}}}{4}, \frac{18}{18} \Rightarrow \frac{\sqrt{18+18 \sqrt{5}}}{6}$, but in all these cases, the product $A \cdot B$ is larger. Since it was given that $A>1, A=2$ is a minimum and we have $(A, B)=\underline{(2,2+2 \sqrt{5})}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2016 SOLUTION KEY

Team Round - continued

F) Let D be the origin, $\overline{D C}$ lie on the positive x-axis, and $\overline{D A}$ lie on the positive y-axis.
R and S (and P and Q) are images across $y=x$, so we need only find the coordinates of one point and the coordinates of the other is found by simply interchanging the coordinates. Clearly, the x-coordinate of points P and R is 2 and the y-coordinate of points Q and S is 2 as well.
The equation of the arc $\widehat{A P Q C}$ is $x^{2}+y^{2}=16$.

$$
x=2 \Rightarrow y=2 \sqrt{3}
$$

Therefore, the coordinates are $P(2,2 \sqrt{3}), Q(2 \sqrt{3}, 2)$.

$$
T P+P V=T V \Leftrightarrow T P+2 \sqrt{3}=4 \Rightarrow T P=4-2 \sqrt{3}
$$

$$
T P=R V \Rightarrow R(2,4-2 \sqrt{3}), S(4-2 \sqrt{3}, 2)
$$

$$
P R=2 \sqrt{3}-(4-2 \sqrt{3})=4 \sqrt{3}-4
$$

$$
P Q=\frac{P R}{\sqrt{2}}=\frac{4(\sqrt{3}-1)}{\sqrt{2}}=2 \sqrt{2}(\sqrt{3}-1)
$$

$$
\Rightarrow \text { Perimeter }=4 P Q=8 \sqrt{2}(\sqrt{3}-1)=8(\sqrt{6}-\sqrt{2}) \Rightarrow(a, b, c)=\underline{(8,6,2)} .
$$

Round 1 Trig: Right Triangles, Laws of Sine and Cosine
A) 504
B) $\frac{4}{3}$
C) $\sqrt{7}$

Round 2 Arithmetic/Elementary Number Theory
A) $(9,27)$
B) 3
C) 0

Round 3 Coordinate Geometry of Lines and Circles
A) 20
B) $(2,3)$
C) 20

Round 4 Alg 2: Log and Exponential Functions
A) 500
B) 16
C) $x<-1,-1<x<0, x>1$

Round 5 Alg 1: Ratio, Proportion or Variation
A) 230
B) $\frac{8}{3}$
C) 27

Round 6 Plane Geometry: Polygons (no areas)
A) 15
B) obtuse
C) $(5 \sqrt{15}, 1+\sqrt{51})$

Team Round
A) $(4,2,2)$
B) $(-2,-3)$ and $(3,2)$
C) $(-3+\sqrt{2}, 0)$
D) $\frac{2 N}{N-1}$
E) $(2,2+2 \sqrt{5})$
F) $(8,6,2)$

