MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2016
 ROUND 1 COMPLEX NUMBERS (No Trig)

ANSWERS

A) \qquad
B) \qquad
C) (\qquad , \qquad)
A) Compute the minimum positive integer A for which $i^{A} \cdot i^{2 A} \cdot i^{4 A} \cdot i^{8 A} \cdot i^{16 A}=i$ is true.
B) Let $z=0.1+6 i$. If $a=\frac{1}{z+\bar{z}}$ and $b i=z-\bar{z}$, compute $|a+b i|$.

Recall:
If $z=a+b i$, then the conjugate of z (written \bar{z}), is defined as $a-b i$. $|a+b i|=\sqrt{a^{2}+b^{2}}$, the distance from the origin to the point $P(a, b)$ in the complex plane.
C) One of the two possible values of $(3+4 i)^{\frac{3}{2}}$ may be written as $A+B i$, where A and B are positive integers. Compute the ordered pair (A, B).

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Round 1

A) Solution \#1:

Since $i^{4}=1,\left(i^{4}\right)^{\text {any integer power }}$ equals 1 .
Therefore, $i^{A} \cdot i^{2 A} \cdot i^{4 A} \cdot i^{8 A} \cdot i^{16 A}=i^{A} \cdot i^{2 A} \cdot{ }^{A}=i^{3 A}=i^{1}=i^{5}=i^{9}$ and we find the minimum value of A by equating exponents. $3 A=9 \Rightarrow A=\underline{\mathbf{3}}$.

Solution \#2:

$$
\begin{aligned}
& i^{A} \cdot i^{2 A} \cdot i^{4 A} \cdot i^{8 A} \cdot i^{16 A}=i^{31 A} \\
& A=1 \Rightarrow i^{31}=\left(i^{4}\right)^{7} i^{3}=1^{7}(-i)=-i \\
& A=2 \Rightarrow i^{62}=\left(i^{4}\right)^{15} i^{2}=-1 \\
& A=3 \Rightarrow i^{93}=\left(i^{4}\right)^{23} i=i \Rightarrow A_{\min }=\underline{\mathbf{3}} .
\end{aligned}
$$

B) $z=0.1+6 i \Rightarrow \bar{z}=0.1-6 i$. If $a=\frac{1}{z+\bar{z}}$ and $b i=z-\bar{z}$,
$a=\frac{1}{.2}=5, b=12 \Rightarrow|5+12 i|=\sqrt{5^{2}+12^{2}}=\sqrt{169}=\underline{\mathbf{1 3}}$ (or recall 5-12-13 Pythagorean Triple)
C) $(3+4 i)^{\frac{1}{2}}=C+D i \Rightarrow(C+D i)^{2}=3+4 i \Rightarrow\left\{\begin{array}{l}C^{2}-D^{2}=3 \\ 2 C D=4\end{array} \Rightarrow(C, D)=(2,1)\right.$ or $(-2,-1)$.
$(3+4 i)^{\frac{3}{2}}=\left((3+4 i)^{\frac{1}{2}}\right)^{3}=(2+i)^{3}=(2+i)^{2}(2+i)=(3+4 i)(2+i)=2+11 i$
Thus, $(A, B)=\underline{(\mathbf{2}, \mathbf{1 1})}$.
$(-2,-1)$ is rejected, since $(-2-i)^{3}=(-1)^{3}(2+i)^{3}=-2-11 i$ and it was required that A and B be positive integers.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2016
 ROUND 2 ALGEBRA 1: ANYTHING

ANSWERS

A) (\qquad , \qquad)
B) \qquad
C) \qquad
A) Richard and Anne were the only candidates running for President of the Chemistry Club. There were no write-in votes for other candidates, so all of the votes cast were for either Richard or Anne.
If 7 of the votes that went to Anne had gone to Richard instead, the candidates would have tied. If 5 of the votes Richard received had gone to Anne, she would have had 7 times as many votes as Richard. How many votes did each candidate receive?
Express your answer as an ordered pair (Anne, Richard).
B) Given: $x \diamond y=x^{2}+y^{2}+x y$

If $2 \star x=12$, compute all possible values of $3 \diamond x$.
C) The force F exerted between two bodies varies inversely as the square of the distance (d) between the two bodies and jointly as the masses of the two bodies (m_{1} and m_{2}).
$F=1200$, when $\left(m_{1}, m_{2}, d\right)=(5,20,8)$.
If the distance between the masses remains unchanged, but each mass is increased by n, the resulting force F is 2208. Compute n.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Round 2

A) $A-7=R+7 \Rightarrow A=R+14$
$A+5=7(R-5) \Leftrightarrow R+19=7 R-35 \Rightarrow 6 R=54 \Rightarrow R=9 \Rightarrow \underline{(23,9)}$.
B) Given: $x \forall x^{2}+y^{2}+x y$
$2 * x=4+x^{2}+2 x=12 \Leftrightarrow x^{2}+2 x-8=(x+4)(x-2)=0 \Rightarrow x=-4,2$
$3 \bullet(-4)=9+16-12=\underline{\mathbf{1 3}}$.
$3 \boldsymbol{2}=9+4+6=\underline{\mathbf{1 9}}$.
C) Given: $F=1200$, when $\left(m_{1}, m_{2}, d\right)=(5,20,8)$
$F=k \frac{m_{1} m_{2}}{d^{2}} \Rightarrow 1200=\frac{100 k}{64} \Rightarrow k=12(64)$ Then:
$2208=12(64) \frac{(5+n)(20+n)}{64} \Rightarrow 100+25 n+n^{2}=\frac{2208}{12}=184$
$\Rightarrow n^{2}+25 n-84=(n-3)(n+28)=0 \Rightarrow n=\underline{\mathbf{3}}$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2016
 ROUND 3 PLANE GEOMETRY: AREAS OF RECTILINEAR FIGURES

ANSWERS

A) \qquad : \qquad
B) \qquad
C) \qquad
A) $A B C D E F$ is a regular hexagon with side of length 6 . Compute the ratio of the area of the shaded region to the area of the unshaded region in hexagon $A B C D E F$.

B) $D E F G$ is a square of side x. $A B C D$ is a rectangle with sides $A B=18$ and $B C=14$.
The ratio of the area of the unshaded region to the area of the shaded region equals $\frac{A B}{B C}$. Compute x.

C) In a rhombus with side 7, the long diagonal has length 11. Compute the length of the altitude of this rhombus.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Round 3

A) Clearly, the regions marked with x 's are congruent and congruent regions have the same area. Therefore, let x denote the area of each of these regions. $\triangle F A N$ and $\triangle M A N$ are not congruent, but they do have the same area. ($F N=N M$ and $\overline{A P}$ is a common altitude when these sides are taken to be the bases of the two triangles.) The area of hexagon $A B C D E F$ equals the sum of an inner hexagon, six equilateral triangles and six
 congruent obtuse triangles, namely, $12 x+12 x+6(2 x)=36 x$.
The required ratio is $4:(36-4)=\underline{\mathbf{1}: \mathbf{8}}$.
B) Given: $D E F G$ is a square of side $x . A B C D$ is a rectangle with sides $A B=18$ and $B C=14$.
$\frac{18 \cdot 14-x^{2}}{x^{2}}=\frac{9}{7} \Rightarrow 7 \cdot 18 \cdot 14-7 x^{2}=9 x^{2}$
$\Rightarrow x^{2}=\frac{7 \cdot 18 \cdot 14}{16}=\frac{4 \cdot 9 \cdot 49}{16}$
$\Rightarrow x=\frac{3 \cdot 7}{2}=\underline{\frac{21}{2}}$ or (10.5).

C) Since the diagonals of a rhombus are perpendicular,
we have $x^{2}+(5.5)^{2}=7^{2} \Rightarrow x^{2}=49-30.25=18 \frac{3}{4}=\frac{75}{4} \Rightarrow x=\frac{5}{2} \sqrt{3}$
Thus, the short diagonal has length $5 \sqrt{3}$.
Note that $5 \sqrt{3}<11$ (since $5^{2} \cdot 3<11^{2}$).
Invoking the area formulas for any rhombus, we have
$7 h=\frac{1}{2} \cdot 11 \cdot 5 \sqrt{3} \Rightarrow h=\frac{55 \sqrt{3}}{14}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 ROUND 4 ALG 1: FACTORING AND ITS APPLICATIONS

ANSWERS

A) \qquad
B) \qquad , \qquad)
C) \qquad
A) Compute all values of x for which $(3 x-2)(3 x+1)=4$.
B) Given: $A>B>0$ and $A \cdot B=180$, for integers A and B.

The greatest common factor of A and B is 1 for exactly j distinct ordered pairs (A, B) and greater than 1 for exactly k distinct ordered pairs (A, B). Compute the ordered pair (j, k).
C) For $A>0, \frac{(x+2)^{2}-81}{(7-x)(A+x)} \geq 0$ is satisfied for exactly 3 distinct integer values of x. Compute all possible integer values of A.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Round 4

A) $(3 x-2)(3 x+1)=4 \Leftrightarrow 9 x^{2}-3 x-6=0 \Leftrightarrow 3\left(3 x^{2}-x-2\right)=3(3 x+2)(x-1)=0 \Rightarrow x=-\underline{\frac{\mathbf{2}}{\mathbf{3}}, \mathbf{1}}$
B) Examining the factorization of $180=2^{2} \cdot 3^{2} \cdot 5^{1}$, we see 180 has 18 positive factors which will form 9 ordered pairs (A, B) where $A \cdot B=180$ and $A>B>0$.
GCF $=1:(180,1),(45,4),(36,5),(20,9)$
GCF $=2:(90,2),(18,10)$
GCF $=3:(60,3),(15,12)$
GCF = 6: $(30,6)$
Thus, $(j, k)=\underline{(4,5)}$.
C) $\frac{(x+2)^{2}-81}{(7-x)(A+x)} \geq 0 \Leftrightarrow \frac{x^{2}+4 x-77}{(7-x)(A+x)} \geq 0 \Leftrightarrow \frac{(x+11)(x-7)}{(7-x)(A+x)} \geq 0 \Leftrightarrow \frac{-x-11}{A+x} \geq 0$, provided $x \neq 7$.
or, equivalently, $\frac{x+11}{A+x} \leq 0$. The solution set is between -11 and $-A$.
However, we must consider two cases: $-A$ to the left of -11 and $-A$ to the right of -11

To guarantee exactly 3 integer solutions, $A=\underline{\mathbf{8}}(-11,-10,-9)$ or $\underline{\mathbf{4}}(-13,-12,-11)$.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2016
 ROUND 5 TRIG: FUNCTIONS OF SPECIAL ANGLES

 ANSWERS

 ANSWERS}
A) \qquad
B) \qquad
C) \qquad
A) Determine the minimum value of A for which $\sin A=\frac{1}{2}$ and $A>800^{\circ}$.
B) Compute $\frac{\tan 60^{\circ}-\sin 270^{\circ}}{\sin 210^{\circ}+\cos 330^{\circ}-\tan \left(-225^{\circ}\right)}$
C) $\triangle E O N$ is equilateral and R is the midpoint of $\overline{N E}$. P, O and R are collinear.
If $\overrightarrow{O S}$ bisects $\angle N O R$. Compute $\tan (P O S)$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Round 5

A) $A=\left\{\begin{array}{l}\text { (1) } 30^{\circ}+n\left(360^{\circ}\right) \\ \text { (2) } 150^{\circ}+n\left(360^{\circ}\right)\end{array}\right.$

For (1), the minimum value of n is 3 , producing 1110
For (2), the minimum value of n is 2 , producing $\underline{870}$.
B) $\frac{\tan 60^{\circ}-\sin 270^{\circ}}{\sin 210^{\circ}+\cos 330^{\circ}-\tan \left(-225^{\circ}\right)}=\frac{\sqrt{3}-(-1)}{-\frac{1}{2}+\frac{\sqrt{3}}{2}-(-1)}=\frac{\sqrt{3}+1}{\frac{\sqrt{3}+1}{2}}=\underline{2}$
C) Clearly, $m \angle P O S=165$.

The tangent of an obtuse angle is negative.
Since $\tan \theta=-\tan (180-\theta)$, $\tan 165^{\circ}=-\tan 15^{\circ}$.
Solution \#1: Using only special angles ($30^{\circ}, 45^{\circ}$ and 60°)

Consider rectangle $A B C D$ with an embedded $30-60-90$ right triangle having sides as indicated.

1) $F C=B C=A D=\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{3}}{2 \sqrt{2}}=\frac{\sqrt{6}}{4} \quad$ 2) $D E=D F=\frac{1}{2} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}}=\frac{\sqrt{2}}{4}$
2) $A B=D F+F C=\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}$
3) $A E=A D-D E=\frac{\sqrt{6}-\sqrt{2}}{4}$
4) $\tan 15^{\circ}=\frac{A E}{A B}=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}=\frac{(\sqrt{6}-\sqrt{2})^{2}}{6-2}=\frac{8-2 \sqrt{12}}{4}=2-\sqrt{3} \Rightarrow \tan 165^{\circ}=\underline{\sqrt{3}-2}$

Solution \#2: (BORING expansion formulas!)

$$
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} \Rightarrow \tan 15^{\circ}=\frac{\tan 60^{\circ}-\tan 45^{\circ}}{1+\tan 60^{\circ} \tan 45^{\circ}}=\frac{\sqrt{3}-1}{1+\sqrt{3}}=\text { etc. }
$$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 ROUND 6 PLANE GEOMETRY: ANGLES, TRIANGLES AND PARALLELS

ANSWERS

A) \qquad
B) \qquad , \qquad)
C) \qquad
A) A concave quadrilateral has interior angles which measure
$x^{\circ},(2 x)^{\circ},(4 x)^{\circ}$ and $(8 x)^{\circ}$.
One of these angles is obtuse, and another is reflexive, i.e. with a degree measure between 180° and 360°.
Compute the sum of the degree-measures of the obtuse and reflexive angles.

B) Each interior angle of a regular polygon with N sides measures more than 178° and less than 179°. The minimum value of N is m and the maximum value of N is M.
Compute the ordered pair (m, M).
C) Shortly after 5PM, the hour and minute hands of a circular clock form an angle of 110°. Within the hour, this happens again. Compute the elapsed time (in minutes) between these two occurrences.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Round 6

A) $x+2 x+4 x+8 x=360 \Leftrightarrow 15 x=360 \Rightarrow x=24$.

Thus, the 4 angle measures are $24^{\circ}, 48^{\circ}, 96^{\circ}$ (obtuse) and 192° (reflexive).
The required sum is $\underline{\mathbf{2 8 8}}$.

B) $178<\frac{180(n-2)}{n}<179 \Rightarrow 178 n<180 n-360$ and $180 n-360<179 n$
$\Rightarrow n>180$ and $n<360 \Rightarrow(m, M)=\underline{(\mathbf{1 8 1}, \mathbf{3 5 9})}$.
C) The minute hand moves 12 times as fast as the hour hand.

In one hour, the minute hand makes a complete revolution, i.e. turns through an angle of 360° or, equivalently, 6° every minute. The hour hand turns through $\frac{360^{\circ}}{12}=30^{\circ}$ every hour, or, equivalently, $\frac{1}{2}^{\circ}$ every minute.
In x minutes, the minute hand turns through $(6 x)^{\circ}$ and the hour hand turns through $\left(\frac{x}{2}\right)^{\circ}$.
Assume the first 110° angle occurs at x minutes past 5:00, i.e. $m \angle M O H=110^{\circ}$
At 5:00, $m \angle A O B=5\left(30^{\circ}\right)=150^{\circ}$
At x minutes past 5:00, $m \angle A O M=(6 x)^{\circ}$ and $m \angle B O H=\left(\frac{x}{2}\right)^{\circ}$.
Equating two different expressions for $\angle A O H$,
$6 x+110=150+\frac{x}{2} \Rightarrow x=\frac{40}{11}$.

For the second occurrence the diagram looks like the clock below:

Equating two different expressions for $\angle A O M$,
$6 x=150+\frac{x}{2}+110 \Rightarrow x=\frac{520}{11}$
The difference $\frac{520-80}{11}=\frac{440}{11}=\underline{\mathbf{4 0}}$ minutes.

MASSACHUSETTS MATHEMATICS LEAGUE
 CONTEST 2 - NOVEMBER 2016
 ROUND 7 TEAM QUESTIONS

ANSWERS

A) \qquad D) (\qquad , \qquad , \qquad , \qquad , \qquad , __)
B) \qquad , __) $S=\{$ \qquad \} E) \qquad
C) (\qquad , , \qquad)
F) \qquad
A) Given: $\sum_{n=1}^{n=32}(1+i)^{n}=k(1-i)$ Compute k.
B) There are K possible digit-sums for the set of 2-digit primes.

Let S be the set of the most frequently occurring digit-sums and N be the number of times each of these sums occurred.
Determine the ordered pair (K, N) and the set S.
Recall: The digit-sum of a number is the sum of the digits in that number.
C) $A B C$ is an equilateral triangle with area 1 unit 2. DEFC, FGHB and HIDA are congruent parallelograms. If $F G=\frac{1}{2}$, the area of the shaded region can be expressed in the form $\frac{A(\sqrt{3}+B \sqrt[4]{3})}{C}$, where A, B and C are relatively prime integers. Compute the ordered triple (A, B, C).

D) $36 x^{2}-3 x y-60 y^{2}+18 x+38 y-4$ factors as the product of two trinomials, namely $A x+B y+C$ and $D x+E y+F$, where each constant is an integer.
If $A B<0$, compute the ordered 6 -tuple of constants (A, B, C, D, E, F).
E) Compute $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$.
F) The exterior angles (one at each vertex) of $\triangle A B C$ measure
$(2(x+y)+8)^{\circ},(5 y-x)^{\circ}$ and $(3 x+y-44)^{\circ}$, where x and y are integers .
$x+y>41$ and $2 y-x>46$
The obtuse angle formed by the bisectors of the acute interior angles of $\triangle A B C$ measures 146°. Compute the degree-measure of the largest exterior angle of $\triangle A B C$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Team Round

A) The summation $\sum_{n=1}^{n=32}(1+i)^{n}$ consists of 32 terms.

Since powers of i cycle in blocks of 4, consider any series of 4 consecutive terms.
Consider the simplest 4-block $(1+i)^{0}+(1+i)^{1}+(1+i)^{2}+(1+i)^{3}$.
This simplifies to $1+(1+i)+2 i+2 i(1+i)=2+3 i+2 i-2=5 i$. Thus, expressions of the form $(1+i)^{k}+(1+i)^{k+1}+(1+i)^{k+2}+(1+i)^{k+3}$ simplify to $(1+i)^{k} \cdot 5 i$, for any integer k.
The index for the given summation starts at 1 .
$k=1 \Rightarrow(1+i)^{1} \cdot(5 i)=5 i+5 i^{2}=-5(1-i)$
For the given summation, $k=1,5,9, \ldots, 29$ generate 32 terms, 8 blocks of 4 terms each.
With a little effort, verify that the 4-block sums for $k=5,9$ and 13 are $20(1-i),-80(1-i)$ and $320(1-i)$. The coefficients of the common binomial term form a geometric sequence with a common multiplier of -4 . We must sum 8 terms from this sequence.
The required sum is $\frac{a\left(1-r^{n}\right)}{1-r}(1-i)=\frac{-5\left(1-(-4)^{8}\right)}{1-(-4)}(1-i)$.
$\Rightarrow k=\frac{5\left(4^{8}-1\right)}{5}=4^{8}-1=2^{16}-1=2^{10} \cdot 2^{6}-1=1024 \cdot 64-1=\underline{\mathbf{6 5 5 3 5}}$.
B) The 2-digit primes are: $11,13,17,19,23,29,31$

37, 41, 43, 47, 53, 59, 61
$67,71,73,79,83,89,97$
There are 21 2-digit primes.
The following chart summarizes the possible digit-sums and their corresponding frequencies

2	4	5	7	8	10	11	13	14	16	17
1	2	2	2	3	3	3	1	1	2	1
11	13	23	43	17	19	29			79	79
31	41	61	71	37	47	67	59	79	89	

The fact that the 11 frequencies add up to 21 is a double check.
Thus, $(K, N)=\underline{(\mathbf{1 1}, \mathbf{3})}, S=\underline{\mathbf{8 , 1 0 , 1 1}\}}$. (The elements in the set S may be listed in any order.)

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Team Round

C) From the diagram at the right, we see that the shaded region is comprised of 3 congruent equilateral triangles ($A D E, B H I$ and $C F G$), 6 congruent 30-60-90 right triangles and 3 congruent rectangles. Any pair of 30-6090 right triangles can be combined to form an equilateral triangle congruent to the named equilateral triangles. Thus, the area of the shaded region is equivalent to 6 equilateral triangles and 3 rectangles. The numbers are atrocious, so for now, forget the numerical values and assume $A B=x$ and $F G=y$. The required area is
$6\left(\frac{y^{2} \sqrt{3}}{4}\right)+3\left(x \cdot \frac{y \sqrt{3}}{2}\right)=\frac{3 \sqrt{3}}{2}\left(y^{2}+x y\right)$

Now we find x, substitute and simplify.
$\frac{x^{2} \sqrt{3}}{4}=1 \Rightarrow x^{2}=\frac{4}{\sqrt{3}}=\frac{4 \sqrt{3}}{3}=\frac{4 \cdot 3 \sqrt{3}}{9}=\frac{4 \sqrt{27}}{9} \Rightarrow x=\frac{2}{3} \sqrt[4]{27}$.
For $y=\frac{1}{2}$, the required area is $\frac{3 \sqrt{3}}{2}\left(\frac{1}{4}+\frac{x}{2}\right)=\frac{3 \sqrt{3}}{8}(1+2 x)=\frac{3 \sqrt{3}}{8}\left(1+\frac{4 \sqrt[4]{27}}{3}\right)$
$=\frac{\sqrt{3}}{8}(3+4 \sqrt[4]{27})=\frac{3 \sqrt{3}+4 \sqrt{3} \cdot \sqrt[4]{27}}{8}=\frac{3 \sqrt{3}+4 \sqrt[4]{9} \cdot \sqrt[4]{27}}{8}=\frac{3 \sqrt{3}+4 \sqrt[4]{3^{5}}}{8}=\frac{3(\sqrt{3}+4 \sqrt[4]{3})}{8} \Rightarrow \underline{(3,4,8)}$.
D) Solution \#1: Quadratic Formula

But the QF works for an equation in a single variable??? Treat y as a constant!
$36 x^{2}-3 x y-60 y^{2}+18 x+38 y-4=36 x^{2}+(18-3 y) x-\left(60 y^{2}-38 y+4\right)$
$x=\frac{3 y-18 \pm \sqrt{(18-3 y)^{2}+4(36)\left(60 y^{2}-38 y+4\right)}}{72}$. Factoring a 9 out of the radicand allows
us to eliminate a factor of 3 in the numerator and denominator.
$x=\frac{y-6 \pm \sqrt{(6-y)^{2}+16\left(60 y^{2}-38 y+4\right)}}{24}$. Expanding the radicand, we are looking for a
perfect square trinomial. $(6-y)^{2}+16\left(60 y^{2}-38 y+4\right)$

$$
36-12 y+y^{2}+960 y^{2}-608 y+64=961 y^{2}-620 y+100
$$

Voila! Both the lead coefficient and the constant term are perfect squares. We have $(31 y-10)^{2}$.
Simplifying the boxed equation, $x=\frac{y-6 \pm(31 y-10)}{24}=\frac{32 y-16}{24}, \frac{-30 y+4}{24}$.
Reducing the fractions, $x=\frac{4 y-2}{3}, \frac{-15 y+2}{12}$. Clearing the fractions and transposing terms, $3 x-4 y+2=0,12 x+15 y-2=0$, and these are our two factors $\Rightarrow \underline{(\mathbf{3},-\mathbf{4}, \mathbf{2}, \mathbf{1 2}, \mathbf{1 5},-\mathbf{2})}$.

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Team Round

D) continued

Solution \#2: Indeterminate Coefficients (or Systematic Guess and Check)
Key Concept: Parity: Even + Odd = Odd / Even x Odd = Even, etc.
Signs (\pm) are not so important, since interchanging positive and negative factors in a product maintains the negative result.
Matching the coefficients of
$(A x+B y+C)(D x+E y+F)=A D x^{2}-(A E+B D) x y+B E y^{2}+(A F+D C) x+(B F+C E) y+C F$ with the coefficients of $36 x^{2}-3 x y-60 y^{2}+18 x+38 y-4$, we get an exciting system of 6 equations in the 6 unknown constants.
$\begin{cases}\text { (1) } x^{2} & A D=36 \\ \text { (2) } x y & A E+B D=-3 \\ \text { (3) } y^{2} & B E=-60 \\ \text { (4) } x & A F+D C=18 \\ \text { (5) } y & B F+C E=38 \\ \text { (6) } & C F=-4\end{cases}$

There are lots of possibilities. To minimize the guesswork, we zero in on equation \#2 (the only one with an odd sum) and \#6 (fewest number of factors) and start "guessing".
If $C=1$ and $F=4$, then $\left\{\begin{array}{l}4 A+D=18 \\ 4 B+E=38\end{array} \Rightarrow\right.$ both D and E are even and this contradicts equation \#2, since the sum $A E+B D$ is supposed to be odd.
Therefore, we definitely know that $C=2, F=-2$ (or vice versa).
Equations \#3, $5 \Rightarrow\left\{\begin{array}{l}B E=-60 \\ B-E=19\end{array} \Rightarrow(B, E)=(-15,4)\right.$
Equations \#1, $2 \Rightarrow\left\{\begin{array}{l}\frac{-4 A+15 D=-3}{A D=36}\end{array} \Rightarrow(A, D)=(12,3)\right.$
Checking in equation \#4, $12 \cdot(-2)+3 \cdot 2=-18$ Oops! It must have been $(C, F)=(-2,2)$
Voila! The factors are $(12 x+15 y-2)$ and $(3 x-4 y+2)$.
If $A B<0$, the required 6 -tuple is $(\mathbf{3},-\mathbf{4}, \mathbf{2}, \mathbf{1 2 , 1 5},-\mathbf{2})$.
Challenge: If the question had asked for $A B+A E+A F+B D+B E+B F+C D+C E+C F$, it would have been MUCH easier. Why?

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Team Round

E) Knowing the expansions for $\sin (A \pm B)$ and $\cos (A \pm B)$, we see that
(1) $\cos (A-B)+\cos (A+B)=2 \cos A \cos B$
(2) $\cos (A-B)-\cos (A+B)=2 \sin A \sin B$
(3) $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$
(4) $\sin (A+B)-\sin (A-B)=2 \cos A \sin B$
$\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}=$
Regrouping for implementation of rule \#2: $\frac{1}{4}\left(2 \sin 10^{\circ} \sin 70^{\circ}\right)\left(2 \sin 30^{\circ} \sin 50^{\circ}\right)$
Applying rule \#2: $\frac{1}{4}\left(\cos 60^{\circ}-\cos 80^{\circ}\right)\left(\cos 20^{\circ}-\cos 80^{\circ}\right)$
FOILing: $\frac{1}{4}\left(\cos 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \cos 80^{\circ}-\cos 80^{\circ} \cos 20^{\circ}+\cos 80^{\circ} \cos 80^{\circ}\right)$
Regrouping: $\frac{1}{4} \cdot \frac{1}{2}\left(2 \cos 60^{\circ} \cos 20^{\circ}-2 \cos 60^{\circ} \cos 80^{\circ}-2 \cos 80^{\circ} \cos 20^{\circ}+2 \cos 80^{\circ} \cos 80^{\circ}\right)$ Applying rule \#1 (to each of the 4 products):
$\frac{1}{8}\left(\left(\cos 40^{\circ}+\cos 80^{\circ}\right)-\left(\cos \left(-20^{\circ}\right)+\cos 140^{\circ}\right)-\left(\cos 60^{\circ}+\cos 100^{\circ}\right)+\left(\cos 0^{\circ}+\cos 160^{\circ}\right)\right)$
$\frac{1}{8}\left(\left(\cos 40^{\circ}+\cos 80^{\circ}\right)-\left(\cos 20^{\circ}-\cos 40^{\circ}\right)-\left(\cos 60^{\circ}-\cos 80^{\circ}\right)+\left(1-\cos 20^{\circ}\right)\right)$
$\frac{1}{8}\left(2 \cos 40^{\circ}+2 \cos 80^{\circ}-2 \cos 20^{\circ}-\frac{1}{2}+1\right)$
$\frac{1}{8}\left(2\left(\cos 40^{\circ}+\cos 80^{\circ}\right)-2 \cos 20^{\circ}-\frac{1}{2}+1\right)$
Now applying rule \#1 in reverse, $A-B=40$ and $A+B=80 \Rightarrow(A, B)=(60,20)$.
$\frac{1}{8}\left(2\left(2 \cos 60^{\circ} \cos 20^{\circ}-\cos 20^{\circ}\right)-\frac{1}{2}+1\right)=\frac{1}{8}\left(2\left(\cos 20^{\circ}-\cos 20^{\circ}\right)-\frac{1}{2}+1\right)=\frac{1}{8}\left(\frac{1}{2}\right)=\underline{\frac{1}{16}}$

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Team Round

F) From the diagram it appears that the acute interior angles are at vertices A and C.

But is this the case?
$x+y>41 \Rightarrow 2(x+y)+8>90 \Rightarrow \angle C A B$ is acute
$\left\{\begin{array}{l}x+y>41 \\ 2(2 y-x>46)\end{array} \Rightarrow 5 y-x>92+41=133 \Rightarrow \angle B C A\right.$ is acute
Thus, the interior angles at A and C are in fact acute!

$a+c+146=180 \Rightarrow a+c=34$
$\Rightarrow 2 a+2 c=68 \Rightarrow 2(x+y)+8+(5 y-x)=360-68 \Rightarrow x+7 y=284$
The exterior angles (one at each vertex) must total 360°.
Therefore, $(2(x+y)+8)+(5 y-x)+(3 x+y-44)=360 \Rightarrow x+2 y=99$
Subtracting, $5 y=185 \Rightarrow y=37, x=25$.
The exterior angles are 132, 68 and $\underline{\mathbf{1 6 0}}$.

Round 1 Algebra 2: Complex Numbers (No Trig)
A) 3
B) 13
C) $(2,11)$

Round 2 Algebra 1: Anything
A) $(23,9)$
B) 13, 19 (in any order)
C) 3

Round 3 Plane Geometry: Area of Rectilinear Figures
A) $1: 8$
B) $10.5\left(\right.$ or $\left.\frac{21}{2}\right)$
C) $\frac{55 \sqrt{3}}{14}$

Round 4 Algebra: Factoring and its Applications
A) $-\frac{2}{3}, 1$
B) $(4,5)$
C) 8,14

Round 5 Trig: Functions of Special Angles
A) 870
B) 2
C) $\sqrt{3}-2$

Round 6 Plane Geometry: Angles, Triangles and Parallels
A) 288
B) $(181,359)$
C) 40

Team Round
A) 65535
B) $(11,3), S=\{8,10,11\}$
C) $(3,4,8)$
D) $(3,-4,2,12,15,-2)$
E) $\frac{1}{16}$
F) 160

